Edit model card

OpenAssistant LLaMA 30B SFT 7 HF

This in HF format repo of OpenAssistant's LLaMA 30B SFT 7.

It is the result of merging the XORs from the above repo with the original Llama 30B weights.

This is epoch 7 of OpenAssistant's training of a Llama 30B model.

Original model card

llama-30b-sft-7:
  dtype: fp16
  log_dir: "llama_log_30b"
  learning_rate: 1e-5
  model_name: /home/ubuntu/Open-Assistant/model/model_training/.saved/llama-30b-super-pretrain/checkpoint-3500
  #model_name: OpenAssistant/llama-30b-super-pretrain
  output_dir: llama_model_30b
  deepspeed_config: configs/zero3_config_sft.json
  weight_decay: 0.0
  residual_dropout: 0.0
  max_length: 2048
  use_flash_attention: true
  warmup_steps: 20
  gradient_checkpointing: true
  gradient_accumulation_steps: 12
  per_device_train_batch_size: 2
  per_device_eval_batch_size: 3
  eval_steps: 101
  save_steps: 485
  num_train_epochs: 4
  save_total_limit: 3
  use_custom_sampler: true
  sort_by_length: false
  #save_strategy: steps
  save_strategy: epoch
  datasets:
    - oasst_export:
        lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
        input_file_path: 2023-04-12_oasst_release_ready_synth.jsonl.gz
        val_split: 0.05
    - vicuna:
        val_split: 0.05
        max_val_set: 800
        fraction: 1.0
    - dolly15k:
        val_split: 0.05
        max_val_set: 300
    - grade_school_math_instructions:
        val_split: 0.05
    - code_alpaca:
        val_split: 0.05
        max_val_set: 250
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.