DeepVTO or Raos_virtual_try_on_model trained by Goutham Rao with stable-diffusion/DreamBooth/feature extraction (EfficientNetB3 CNN model)/OpenPose for estimating person keypoints/

stable diffusion and vector embeddings concepts used to build a virtual try-on system that provides a realistic and visually appealing virtual try-on experience for users

Hardware and software Requirements : GPU A100 , High RAM , pytorch ,stable-diffusion-v1-5 , python 3.0 , U-Net Architecture , Dreambooth , OpenPose , EfficienNetB3 pre-trained CNN model

The DeepVTO model is hosted on the Hugging Face Model Hub. (https://huggingface.co/gouthaml/raos-virtual-try-on-model) This model leverages a combination of advanced deep learning techniques and architectures, including stable-diffusion, DreamBooth, feature extraction using the EfficientNetB3 CNN model, and OpenPose for estimating person keypoints. These techniques are harmoniously integrated to provide a realistic and visually appealing virtual try-on experience for users.

The DeepVTO model is built on the principles of stable diffusion and vector embeddings, which are critical in creating a high-quality virtual try-on system. The model is trained using the DreamBooth model, which is a stable-diffusion model, and the feature extraction is performed using the EfficientNetB3 CNN model. OpenPose, a real-time multi-person system to jointly detect human body, hand, facial, and foot keypoints, is used for estimating person keypoints.

The model requires specific hardware and software for optimal performance. The hardware requirements include a GPU A100 and high RAM. The software requirements include PyTorch, stable-diffusion-v1-5, Python 3.0, U-Net Architecture, Dreambooth, OpenPose, and the EfficientNetB3 pre-trained CNN model.

The DeepVTO model is a testament to the potential of deep learning in the fashion retail industry. It showcases how advanced machine learning techniques can be used to enhance the online shopping experience, making it more interactive and personalized. This model serves as a valuable resource for researchers and practitioners in the field, providing a practical example of a high-quality virtual try-on system.

The model also provides a foundation for future research and development in the field of virtual try-on systems. It highlights the potential of deep learning techniques in addressing the challenges associated with virtual try-on systems, such as the accuracy of virtual representations and the scalability of the system. By leveraging advanced deep learning techniques, the DeepVTO model paves the way for the development of more sophisticated and effective virtual try-on systems in the future.

Sample pictures of this concept:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

Downloads last month
182
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using gouthaml/raos-virtual-try-on-model 13