Edit model card

my_awesome_wnut_NEG

This model is a fine-tuned version of distilbert/distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0164
  • Precision: 0.9412
  • Recall: 0.8889
  • F1: 0.9143
  • Accuracy: 0.9979

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 46 0.0377 0.9375 0.2778 0.4286 0.9878
No log 2.0 92 0.0142 0.9535 0.7593 0.8454 0.9960
No log 3.0 138 0.0100 0.9184 0.8333 0.8738 0.9967
No log 4.0 184 0.0104 0.875 0.9074 0.8909 0.9967
No log 5.0 230 0.0108 0.9074 0.9074 0.9074 0.9976
No log 6.0 276 0.0128 0.8596 0.9074 0.8829 0.9967
No log 7.0 322 0.0145 0.8448 0.9074 0.875 0.9964
No log 8.0 368 0.0136 0.9074 0.9074 0.9074 0.9976
No log 9.0 414 0.0180 0.9375 0.8333 0.8824 0.9970
No log 10.0 460 0.0184 0.8868 0.8704 0.8785 0.9964
0.0166 11.0 506 0.0186 0.8519 0.8519 0.8519 0.9960
0.0166 12.0 552 0.0191 0.9020 0.8519 0.8762 0.9970
0.0166 13.0 598 0.0193 0.9020 0.8519 0.8762 0.9970
0.0166 14.0 644 0.0195 0.9020 0.8519 0.8762 0.9970
0.0166 15.0 690 0.0199 0.9020 0.8519 0.8762 0.9970
0.0166 16.0 736 0.0202 0.9020 0.8519 0.8762 0.9970
0.0166 17.0 782 0.0206 0.9020 0.8519 0.8762 0.9970
0.0166 18.0 828 0.0207 0.9020 0.8519 0.8762 0.9970
0.0166 19.0 874 0.0208 0.9020 0.8519 0.8762 0.9970
0.0166 20.0 920 0.0211 0.9020 0.8519 0.8762 0.9970
0.0166 21.0 966 0.0214 0.9020 0.8519 0.8762 0.9970
0.0 22.0 1012 0.0216 0.9020 0.8519 0.8762 0.9970
0.0 23.0 1058 0.0218 0.9020 0.8519 0.8762 0.9970
0.0 24.0 1104 0.0219 0.9020 0.8519 0.8762 0.9970
0.0 25.0 1150 0.0219 0.9020 0.8519 0.8762 0.9970
0.0 26.0 1196 0.0223 0.9020 0.8519 0.8762 0.9970
0.0 27.0 1242 0.0225 0.9020 0.8519 0.8762 0.9970
0.0 28.0 1288 0.0227 0.9020 0.8519 0.8762 0.9970
0.0 29.0 1334 0.0229 0.9020 0.8519 0.8762 0.9970
0.0 30.0 1380 0.0229 0.9020 0.8519 0.8762 0.9970
0.0 31.0 1426 0.0231 0.9020 0.8519 0.8762 0.9970
0.0 32.0 1472 0.0233 0.9020 0.8519 0.8762 0.9970
0.0 33.0 1518 0.0234 0.9020 0.8519 0.8762 0.9970
0.0 34.0 1564 0.0235 0.9020 0.8519 0.8762 0.9970
0.0 35.0 1610 0.0237 0.9020 0.8519 0.8762 0.9970
0.0 36.0 1656 0.0238 0.9020 0.8519 0.8762 0.9970
0.0 37.0 1702 0.0252 0.94 0.8704 0.9038 0.9976
0.0 38.0 1748 0.0250 0.94 0.8704 0.9038 0.9976
0.0 39.0 1794 0.0251 0.94 0.8704 0.9038 0.9976
0.0 40.0 1840 0.0249 0.9020 0.8519 0.8762 0.9970
0.0 41.0 1886 0.0249 0.9020 0.8519 0.8762 0.9970
0.0 42.0 1932 0.0250 0.9020 0.8519 0.8762 0.9970
0.0 43.0 1978 0.0251 0.9020 0.8519 0.8762 0.9970
0.0 44.0 2024 0.0252 0.9020 0.8519 0.8762 0.9970
0.0 45.0 2070 0.0253 0.9020 0.8519 0.8762 0.9970
0.0 46.0 2116 0.0255 0.9020 0.8519 0.8762 0.9970
0.0 47.0 2162 0.0259 0.875 0.9074 0.8909 0.9967
0.0 48.0 2208 0.0264 0.8727 0.8889 0.8807 0.9964
0.0 49.0 2254 0.0170 0.94 0.8704 0.9038 0.9976
0.0 50.0 2300 0.0177 0.94 0.8704 0.9038 0.9976
0.0 51.0 2346 0.0180 0.94 0.8704 0.9038 0.9976
0.0 52.0 2392 0.0175 0.9412 0.8889 0.9143 0.9979
0.0 53.0 2438 0.0176 0.9245 0.9074 0.9159 0.9979
0.0 54.0 2484 0.0178 0.9245 0.9074 0.9159 0.9979
0.0001 55.0 2530 0.0179 0.9245 0.9074 0.9159 0.9979
0.0001 56.0 2576 0.0181 0.9245 0.9074 0.9159 0.9979
0.0001 57.0 2622 0.0183 0.9245 0.9074 0.9159 0.9979
0.0001 58.0 2668 0.0186 0.9592 0.8704 0.9126 0.9979
0.0001 59.0 2714 0.0159 0.9434 0.9259 0.9346 0.9982
0.0001 60.0 2760 0.0160 0.9434 0.9259 0.9346 0.9982
0.0001 61.0 2806 0.0160 0.9434 0.9259 0.9346 0.9982
0.0001 62.0 2852 0.0161 0.9434 0.9259 0.9346 0.9982
0.0001 63.0 2898 0.0161 0.9245 0.9074 0.9159 0.9979
0.0001 64.0 2944 0.0162 0.9245 0.9074 0.9159 0.9979
0.0001 65.0 2990 0.0162 0.9245 0.9074 0.9159 0.9979
0.0 66.0 3036 0.0163 0.9245 0.9074 0.9159 0.9979
0.0 67.0 3082 0.0164 0.9245 0.9074 0.9159 0.9979
0.0 68.0 3128 0.0164 0.9245 0.9074 0.9159 0.9979
0.0 69.0 3174 0.0164 0.9245 0.9074 0.9159 0.9979
0.0 70.0 3220 0.0165 0.9245 0.9074 0.9159 0.9979
0.0 71.0 3266 0.0165 0.9245 0.9074 0.9159 0.9979
0.0 72.0 3312 0.0165 0.9245 0.9074 0.9159 0.9979
0.0 73.0 3358 0.0166 0.9245 0.9074 0.9159 0.9979
0.0 74.0 3404 0.0166 0.9245 0.9074 0.9159 0.9979
0.0 75.0 3450 0.0166 0.9245 0.9074 0.9159 0.9979
0.0 76.0 3496 0.0167 0.9245 0.9074 0.9159 0.9979
0.0 77.0 3542 0.0167 0.9245 0.9074 0.9159 0.9979
0.0 78.0 3588 0.0168 0.9245 0.9074 0.9159 0.9979
0.0 79.0 3634 0.0168 0.9245 0.9074 0.9159 0.9979
0.0 80.0 3680 0.0168 0.9245 0.9074 0.9159 0.9979
0.0 81.0 3726 0.0168 0.9245 0.9074 0.9159 0.9979
0.0 82.0 3772 0.0169 0.9245 0.9074 0.9159 0.9979
0.0 83.0 3818 0.0169 0.9245 0.9074 0.9159 0.9979
0.0 84.0 3864 0.0170 0.9245 0.9074 0.9159 0.9979
0.0 85.0 3910 0.0162 0.9412 0.8889 0.9143 0.9979
0.0 86.0 3956 0.0162 0.9412 0.8889 0.9143 0.9979
0.0 87.0 4002 0.0163 0.9412 0.8889 0.9143 0.9979
0.0 88.0 4048 0.0163 0.9412 0.8889 0.9143 0.9979
0.0 89.0 4094 0.0163 0.9412 0.8889 0.9143 0.9979
0.0 90.0 4140 0.0163 0.9412 0.8889 0.9143 0.9979
0.0 91.0 4186 0.0163 0.9412 0.8889 0.9143 0.9979
0.0 92.0 4232 0.0163 0.9412 0.8889 0.9143 0.9979
0.0 93.0 4278 0.0163 0.9412 0.8889 0.9143 0.9979
0.0 94.0 4324 0.0163 0.9412 0.8889 0.9143 0.9979
0.0 95.0 4370 0.0163 0.9412 0.8889 0.9143 0.9979
0.0 96.0 4416 0.0163 0.9412 0.8889 0.9143 0.9979
0.0 97.0 4462 0.0163 0.9412 0.8889 0.9143 0.9979
0.0 98.0 4508 0.0164 0.9412 0.8889 0.9143 0.9979
0.0 99.0 4554 0.0164 0.9412 0.8889 0.9143 0.9979
0.0 100.0 4600 0.0164 0.9412 0.8889 0.9143 0.9979

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.2.2+cu118
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
4
Safetensors
Model size
66.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gonzalezrostani/my_awesome_wnut_NEG

Finetuned
(6713)
this model