my_awesome_wnut_NEG
This model is a fine-tuned version of distilbert/distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0164
- Precision: 0.9412
- Recall: 0.8889
- F1: 0.9143
- Accuracy: 0.9979
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 46 | 0.0377 | 0.9375 | 0.2778 | 0.4286 | 0.9878 |
No log | 2.0 | 92 | 0.0142 | 0.9535 | 0.7593 | 0.8454 | 0.9960 |
No log | 3.0 | 138 | 0.0100 | 0.9184 | 0.8333 | 0.8738 | 0.9967 |
No log | 4.0 | 184 | 0.0104 | 0.875 | 0.9074 | 0.8909 | 0.9967 |
No log | 5.0 | 230 | 0.0108 | 0.9074 | 0.9074 | 0.9074 | 0.9976 |
No log | 6.0 | 276 | 0.0128 | 0.8596 | 0.9074 | 0.8829 | 0.9967 |
No log | 7.0 | 322 | 0.0145 | 0.8448 | 0.9074 | 0.875 | 0.9964 |
No log | 8.0 | 368 | 0.0136 | 0.9074 | 0.9074 | 0.9074 | 0.9976 |
No log | 9.0 | 414 | 0.0180 | 0.9375 | 0.8333 | 0.8824 | 0.9970 |
No log | 10.0 | 460 | 0.0184 | 0.8868 | 0.8704 | 0.8785 | 0.9964 |
0.0166 | 11.0 | 506 | 0.0186 | 0.8519 | 0.8519 | 0.8519 | 0.9960 |
0.0166 | 12.0 | 552 | 0.0191 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0166 | 13.0 | 598 | 0.0193 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0166 | 14.0 | 644 | 0.0195 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0166 | 15.0 | 690 | 0.0199 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0166 | 16.0 | 736 | 0.0202 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0166 | 17.0 | 782 | 0.0206 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0166 | 18.0 | 828 | 0.0207 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0166 | 19.0 | 874 | 0.0208 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0166 | 20.0 | 920 | 0.0211 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0166 | 21.0 | 966 | 0.0214 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0 | 22.0 | 1012 | 0.0216 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0 | 23.0 | 1058 | 0.0218 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0 | 24.0 | 1104 | 0.0219 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0 | 25.0 | 1150 | 0.0219 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0 | 26.0 | 1196 | 0.0223 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0 | 27.0 | 1242 | 0.0225 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0 | 28.0 | 1288 | 0.0227 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0 | 29.0 | 1334 | 0.0229 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0 | 30.0 | 1380 | 0.0229 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0 | 31.0 | 1426 | 0.0231 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0 | 32.0 | 1472 | 0.0233 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0 | 33.0 | 1518 | 0.0234 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0 | 34.0 | 1564 | 0.0235 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0 | 35.0 | 1610 | 0.0237 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0 | 36.0 | 1656 | 0.0238 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0 | 37.0 | 1702 | 0.0252 | 0.94 | 0.8704 | 0.9038 | 0.9976 |
0.0 | 38.0 | 1748 | 0.0250 | 0.94 | 0.8704 | 0.9038 | 0.9976 |
0.0 | 39.0 | 1794 | 0.0251 | 0.94 | 0.8704 | 0.9038 | 0.9976 |
0.0 | 40.0 | 1840 | 0.0249 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0 | 41.0 | 1886 | 0.0249 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0 | 42.0 | 1932 | 0.0250 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0 | 43.0 | 1978 | 0.0251 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0 | 44.0 | 2024 | 0.0252 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0 | 45.0 | 2070 | 0.0253 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0 | 46.0 | 2116 | 0.0255 | 0.9020 | 0.8519 | 0.8762 | 0.9970 |
0.0 | 47.0 | 2162 | 0.0259 | 0.875 | 0.9074 | 0.8909 | 0.9967 |
0.0 | 48.0 | 2208 | 0.0264 | 0.8727 | 0.8889 | 0.8807 | 0.9964 |
0.0 | 49.0 | 2254 | 0.0170 | 0.94 | 0.8704 | 0.9038 | 0.9976 |
0.0 | 50.0 | 2300 | 0.0177 | 0.94 | 0.8704 | 0.9038 | 0.9976 |
0.0 | 51.0 | 2346 | 0.0180 | 0.94 | 0.8704 | 0.9038 | 0.9976 |
0.0 | 52.0 | 2392 | 0.0175 | 0.9412 | 0.8889 | 0.9143 | 0.9979 |
0.0 | 53.0 | 2438 | 0.0176 | 0.9245 | 0.9074 | 0.9159 | 0.9979 |
0.0 | 54.0 | 2484 | 0.0178 | 0.9245 | 0.9074 | 0.9159 | 0.9979 |
0.0001 | 55.0 | 2530 | 0.0179 | 0.9245 | 0.9074 | 0.9159 | 0.9979 |
0.0001 | 56.0 | 2576 | 0.0181 | 0.9245 | 0.9074 | 0.9159 | 0.9979 |
0.0001 | 57.0 | 2622 | 0.0183 | 0.9245 | 0.9074 | 0.9159 | 0.9979 |
0.0001 | 58.0 | 2668 | 0.0186 | 0.9592 | 0.8704 | 0.9126 | 0.9979 |
0.0001 | 59.0 | 2714 | 0.0159 | 0.9434 | 0.9259 | 0.9346 | 0.9982 |
0.0001 | 60.0 | 2760 | 0.0160 | 0.9434 | 0.9259 | 0.9346 | 0.9982 |
0.0001 | 61.0 | 2806 | 0.0160 | 0.9434 | 0.9259 | 0.9346 | 0.9982 |
0.0001 | 62.0 | 2852 | 0.0161 | 0.9434 | 0.9259 | 0.9346 | 0.9982 |
0.0001 | 63.0 | 2898 | 0.0161 | 0.9245 | 0.9074 | 0.9159 | 0.9979 |
0.0001 | 64.0 | 2944 | 0.0162 | 0.9245 | 0.9074 | 0.9159 | 0.9979 |
0.0001 | 65.0 | 2990 | 0.0162 | 0.9245 | 0.9074 | 0.9159 | 0.9979 |
0.0 | 66.0 | 3036 | 0.0163 | 0.9245 | 0.9074 | 0.9159 | 0.9979 |
0.0 | 67.0 | 3082 | 0.0164 | 0.9245 | 0.9074 | 0.9159 | 0.9979 |
0.0 | 68.0 | 3128 | 0.0164 | 0.9245 | 0.9074 | 0.9159 | 0.9979 |
0.0 | 69.0 | 3174 | 0.0164 | 0.9245 | 0.9074 | 0.9159 | 0.9979 |
0.0 | 70.0 | 3220 | 0.0165 | 0.9245 | 0.9074 | 0.9159 | 0.9979 |
0.0 | 71.0 | 3266 | 0.0165 | 0.9245 | 0.9074 | 0.9159 | 0.9979 |
0.0 | 72.0 | 3312 | 0.0165 | 0.9245 | 0.9074 | 0.9159 | 0.9979 |
0.0 | 73.0 | 3358 | 0.0166 | 0.9245 | 0.9074 | 0.9159 | 0.9979 |
0.0 | 74.0 | 3404 | 0.0166 | 0.9245 | 0.9074 | 0.9159 | 0.9979 |
0.0 | 75.0 | 3450 | 0.0166 | 0.9245 | 0.9074 | 0.9159 | 0.9979 |
0.0 | 76.0 | 3496 | 0.0167 | 0.9245 | 0.9074 | 0.9159 | 0.9979 |
0.0 | 77.0 | 3542 | 0.0167 | 0.9245 | 0.9074 | 0.9159 | 0.9979 |
0.0 | 78.0 | 3588 | 0.0168 | 0.9245 | 0.9074 | 0.9159 | 0.9979 |
0.0 | 79.0 | 3634 | 0.0168 | 0.9245 | 0.9074 | 0.9159 | 0.9979 |
0.0 | 80.0 | 3680 | 0.0168 | 0.9245 | 0.9074 | 0.9159 | 0.9979 |
0.0 | 81.0 | 3726 | 0.0168 | 0.9245 | 0.9074 | 0.9159 | 0.9979 |
0.0 | 82.0 | 3772 | 0.0169 | 0.9245 | 0.9074 | 0.9159 | 0.9979 |
0.0 | 83.0 | 3818 | 0.0169 | 0.9245 | 0.9074 | 0.9159 | 0.9979 |
0.0 | 84.0 | 3864 | 0.0170 | 0.9245 | 0.9074 | 0.9159 | 0.9979 |
0.0 | 85.0 | 3910 | 0.0162 | 0.9412 | 0.8889 | 0.9143 | 0.9979 |
0.0 | 86.0 | 3956 | 0.0162 | 0.9412 | 0.8889 | 0.9143 | 0.9979 |
0.0 | 87.0 | 4002 | 0.0163 | 0.9412 | 0.8889 | 0.9143 | 0.9979 |
0.0 | 88.0 | 4048 | 0.0163 | 0.9412 | 0.8889 | 0.9143 | 0.9979 |
0.0 | 89.0 | 4094 | 0.0163 | 0.9412 | 0.8889 | 0.9143 | 0.9979 |
0.0 | 90.0 | 4140 | 0.0163 | 0.9412 | 0.8889 | 0.9143 | 0.9979 |
0.0 | 91.0 | 4186 | 0.0163 | 0.9412 | 0.8889 | 0.9143 | 0.9979 |
0.0 | 92.0 | 4232 | 0.0163 | 0.9412 | 0.8889 | 0.9143 | 0.9979 |
0.0 | 93.0 | 4278 | 0.0163 | 0.9412 | 0.8889 | 0.9143 | 0.9979 |
0.0 | 94.0 | 4324 | 0.0163 | 0.9412 | 0.8889 | 0.9143 | 0.9979 |
0.0 | 95.0 | 4370 | 0.0163 | 0.9412 | 0.8889 | 0.9143 | 0.9979 |
0.0 | 96.0 | 4416 | 0.0163 | 0.9412 | 0.8889 | 0.9143 | 0.9979 |
0.0 | 97.0 | 4462 | 0.0163 | 0.9412 | 0.8889 | 0.9143 | 0.9979 |
0.0 | 98.0 | 4508 | 0.0164 | 0.9412 | 0.8889 | 0.9143 | 0.9979 |
0.0 | 99.0 | 4554 | 0.0164 | 0.9412 | 0.8889 | 0.9143 | 0.9979 |
0.0 | 100.0 | 4600 | 0.0164 | 0.9412 | 0.8889 | 0.9143 | 0.9979 |
Framework versions
- Transformers 4.39.1
- Pytorch 2.2.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for gonzalezrostani/my_awesome_wnut_NEG
Base model
distilbert/distilbert-base-uncased