File size: 8,801 Bytes
a401787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# -*-coding:utf-8-*-

from typing import Optional
import datetime
import os
from threading import Event, Thread
from uuid import uuid4

import gradio as gr
import requests
import torch
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    StoppingCriteria,
    StoppingCriteriaList,
    TextIteratorStreamer,
)


model_name = "golaxy/chinese-bloom-3b"
max_new_tokens = 2048


print(f"Starting to load the model {model_name} into memory")

tok = AutoTokenizer.from_pretrained(model_name)
#m = AutoModelForCausalLM.from_pretrained(model_name).eval()
m = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
print("m=====>device",m.device)
# tok.convert_tokens_to_ids(["<|im_end|>", "<|endoftext|>"])
stop_token_ids = [tok.eos_token_id]

print(f"Successfully loaded the model {model_name} into memory")



class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        for stop_id in stop_token_ids:
            if input_ids[0][-1] == stop_id:
                return True
        return False


PROMPT_DICT = {
    "prompt_input": (
        "Below is an instruction that describes a task, paired with an input that provides further context. "
        "Write a response that appropriately completes the request.\n\n"
        "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"
    ),
    "prompt_no_input": (
        "Below is an instruction that describes a task. "
        "Write a response that appropriately completes the request.\n\n"
        "### Instruction:\n{instruction}\n\n### Response:"
    ),
}


def generate_input(instruction: Optional[str] = None, input_str: Optional[str] = None) -> str:
    if input_str is None:
        return PROMPT_DICT['prompt_no_input'].format_map({'instruction': instruction})
    else:
        return PROMPT_DICT['prompt_input'].format_map({'instruction': instruction, 'input': input_str})


def convert_history_to_text(history):

    user_input = history[-1][0]

    text = generate_input(user_input)
    return text




def log_conversation(conversation_id, history, messages, generate_kwargs):
    logging_url = os.getenv("LOGGING_URL", None)
    if logging_url is None:
        return

    timestamp = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S")

    data = {
        "conversation_id": conversation_id,
        "timestamp": timestamp,
        "history": history,
        "messages": messages,
        "generate_kwargs": generate_kwargs,
    }

    try:
        requests.post(logging_url, json=data)
    except requests.exceptions.RequestException as e:
        print(f"Error logging conversation: {e}")


def user(message, history):
    # Append the user's message to the conversation history
    return "", history + [[message, ""]]


def bot(history, temperature, top_p, top_k, repetition_penalty, conversation_id):
    print(f"history: {history}")
    # Initialize a StopOnTokens object
    stop = StopOnTokens()

    # Construct the input message string for the model by concatenating the current system message and conversation history
    messages = convert_history_to_text(history)

    # Tokenize the messages string
    input_ids = tok(messages, return_tensors="pt").input_ids
    input_ids = input_ids.to(m.device)
    streamer = TextIteratorStreamer(
        tok, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        input_ids=input_ids,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        do_sample=temperature > 0.0,
        top_p=top_p,
        top_k=top_k,
        repetition_penalty=repetition_penalty,
        streamer=streamer,
        stopping_criteria=StoppingCriteriaList([stop]),
    )
    print(generate_kwargs)
    stream_complete = Event()

    def generate_and_signal_complete():
        m.generate(**generate_kwargs)
        stream_complete.set()

    def log_after_stream_complete():
        stream_complete.wait()
        log_conversation(
            conversation_id,
            history,
            messages,
            {
                "top_k": top_k,
                "top_p": top_p,
                "temperature": temperature,
                "repetition_penalty": repetition_penalty,
            },
        )

    t1 = Thread(target=generate_and_signal_complete)
    t1.start()

    t2 = Thread(target=log_after_stream_complete)
    t2.start()

    # Initialize an empty string to store the generated text
    partial_text = ""
    for new_text in streamer:
        partial_text += new_text
        history[-1][1] = partial_text
        yield history


def get_uuid():
    return str(uuid4())


with gr.Blocks(
    theme=gr.themes.Soft(),
    css=".disclaimer {font-variant-caps: all-small-caps;}",
) as demo:
    conversation_id = gr.State(get_uuid)
    chatbot = gr.Chatbot().style(height=500)
    with gr.Row():
        with gr.Column():
            msg = gr.Textbox(
                label="Chat Message Box",
                placeholder="Chat Message Box",
                show_label=False,
            ).style(container=False)
        with gr.Column():
            with gr.Row():
                submit = gr.Button("Submit")
                stop = gr.Button("Stop")
                clear = gr.Button("Clear")
    with gr.Row():
        with gr.Accordion("Advanced Options:", open=False):
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        temperature = gr.Slider(
                            label="Temperature",
                            value=0.1,
                            minimum=0.0,
                            maximum=1.0,
                            step=0.1,
                            interactive=True,
                            info="Higher values produce more diverse outputs",
                        )
                with gr.Column():
                    with gr.Row():
                        top_p = gr.Slider(
                            label="Top-p (nucleus sampling)",
                            value=1.0,
                            minimum=0.0,
                            maximum=1,
                            step=0.01,
                            interactive=True,
                            info=(
                                "Sample from the smallest possible set of tokens whose cumulative probability "
                                "exceeds top_p. Set to 1 to disable and sample from all tokens."
                            ),
                        )
                with gr.Column():
                    with gr.Row():
                        top_k = gr.Slider(
                            label="Top-k",
                            value=0,
                            minimum=0.0,
                            maximum=200,
                            step=1,
                            interactive=True,
                            info="Sample from a shortlist of top-k tokens — 0 to disable and sample from all tokens.",
                        )
                with gr.Column():
                    with gr.Row():
                        repetition_penalty = gr.Slider(
                            label="Repetition Penalty",
                            value=1.1,
                            minimum=1.0,
                            maximum=2.0,
                            step=0.1,
                            interactive=True,
                            info="Penalize repetition — 1.0 to disable.",
                        )
    # with gr.Row():
    #     gr.Markdown(
    #         "demo 2",
    #         elem_classes=["disclaimer"],
    #     )

    submit_event = msg.submit(
        fn=user,
        inputs=[msg, chatbot],
        outputs=[msg, chatbot],
        queue=False,
    ).then(
        fn=bot,
        inputs=[
            chatbot,
            temperature,
            top_p,
            top_k,
            repetition_penalty,
            conversation_id,
        ],
        outputs=chatbot,
        queue=True,
    )
    submit_click_event = submit.click(
        fn=user,
        inputs=[msg, chatbot],
        outputs=[msg, chatbot],
        queue=False,
    ).then(
        fn=bot,
        inputs=[
            chatbot,
            temperature,
            top_p,
            top_k,
            repetition_penalty,
            conversation_id,
        ],
        outputs=chatbot,
        queue=True,
    )
    stop.click(
        fn=None,
        inputs=None,
        outputs=None,
        cancels=[submit_event, submit_click_event],
        queue=False,
    )
    clear.click(lambda: None, None, chatbot, queue=False)

demo.queue(max_size=128, concurrency_count=2)
demo.launch(server_name="0.0.0.0",server_port=7777)