bert_base_lda_100_v1

This model is a fine-tuned version of on the gokulsrinivasagan/processed_wikitext-103-raw-v1-ld-100 dataset. It achieves the following results on the evaluation set:

  • Loss: 6.9999
  • Accuracy: 0.4235

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 96
  • eval_batch_size: 96
  • seed: 10
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10000
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
10.4589 4.1982 10000 10.2935 0.1510
9.6043 8.3963 20000 9.6179 0.1525
9.48 12.5945 30000 9.5449 0.1561
8.9658 16.7926 40000 8.8322 0.2303
7.2614 20.9908 50000 7.0173 0.4201

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.2.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
39
Safetensors
Model size
110M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for gokulsrinivasagan/bert_base_lda_100_v1

Finetunes
9 models

Dataset used to train gokulsrinivasagan/bert_base_lda_100_v1

Evaluation results

  • Accuracy on gokulsrinivasagan/processed_wikitext-103-raw-v1-ld-100
    self-reported
    0.423