hbertv1-massive-logit_KD_new
This model is a fine-tuned version of gokuls/bert_12_layer_model_v1_complete_training_new_48 on the massive dataset. It achieves the following results on the evaluation set:
- Loss: 0.5587
- Accuracy: 0.8539
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 33
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.3071 | 1.0 | 180 | 1.0522 | 0.7019 |
0.9618 | 2.0 | 360 | 0.7397 | 0.7836 |
0.6757 | 3.0 | 540 | 0.7535 | 0.7831 |
0.5344 | 4.0 | 720 | 0.6076 | 0.8269 |
0.4319 | 5.0 | 900 | 0.6585 | 0.8165 |
0.3648 | 6.0 | 1080 | 0.5726 | 0.8362 |
0.3326 | 7.0 | 1260 | 0.5642 | 0.8372 |
0.2904 | 8.0 | 1440 | 0.5858 | 0.8352 |
0.2554 | 9.0 | 1620 | 0.5521 | 0.8411 |
0.2314 | 10.0 | 1800 | 0.5571 | 0.8436 |
0.2192 | 11.0 | 1980 | 0.5479 | 0.8470 |
0.2 | 12.0 | 2160 | 0.5587 | 0.8539 |
0.1924 | 13.0 | 2340 | 0.5430 | 0.8480 |
0.1683 | 14.0 | 2520 | 0.5647 | 0.8490 |
0.1703 | 15.0 | 2700 | 0.5467 | 0.8515 |
0.1598 | 16.0 | 2880 | 0.5578 | 0.8510 |
0.1522 | 17.0 | 3060 | 0.5682 | 0.8431 |
Framework versions
- Transformers 4.35.2
- Pytorch 1.14.0a0+410ce96
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 52
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.