hbertv1-massive-logit_KD_new

This model is a fine-tuned version of gokuls/bert_12_layer_model_v1_complete_training_new_48 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5587
  • Accuracy: 0.8539

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.3071 1.0 180 1.0522 0.7019
0.9618 2.0 360 0.7397 0.7836
0.6757 3.0 540 0.7535 0.7831
0.5344 4.0 720 0.6076 0.8269
0.4319 5.0 900 0.6585 0.8165
0.3648 6.0 1080 0.5726 0.8362
0.3326 7.0 1260 0.5642 0.8372
0.2904 8.0 1440 0.5858 0.8352
0.2554 9.0 1620 0.5521 0.8411
0.2314 10.0 1800 0.5571 0.8436
0.2192 11.0 1980 0.5479 0.8470
0.2 12.0 2160 0.5587 0.8539
0.1924 13.0 2340 0.5430 0.8480
0.1683 14.0 2520 0.5647 0.8490
0.1703 15.0 2700 0.5467 0.8515
0.1598 16.0 2880 0.5578 0.8510
0.1522 17.0 3060 0.5682 0.8431

Framework versions

  • Transformers 4.35.2
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
52
Safetensors
Model size
120M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for gokuls/hbertv1-massive-logit_KD_new

Evaluation results