bert_12_layer_model_v1_complete_training_new_48

This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9912
  • Accuracy: 0.4898

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 48
  • eval_batch_size: 48
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10000
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
6.5749 0.08 10000 6.5381 0.1270
6.333 0.16 20000 6.3097 0.1410
6.2341 0.25 30000 6.2179 0.1450
6.1803 0.33 40000 6.1586 0.1478
6.0775 0.41 50000 6.0471 0.1520
5.8957 0.49 60000 5.8458 0.1655
5.7655 0.57 70000 5.7040 0.1846
5.6281 0.66 80000 5.5480 0.2026
5.1797 0.74 90000 5.0004 0.2661
4.7518 0.82 100000 4.5751 0.3097
4.3368 0.9 110000 4.1455 0.3518
3.9513 0.98 120000 3.7659 0.3964
3.682 1.07 130000 3.5328 0.4248
3.5114 1.15 140000 3.3715 0.4441
3.3789 1.23 150000 3.2500 0.4591
3.2776 1.31 160000 3.1468 0.4709
3.204 1.39 170000 3.0899 0.4784
3.1051 1.47 180000 2.9912 0.4898

Framework versions

  • Transformers 4.29.2
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gokuls/bert_12_layer_model_v1_complete_training_new_48

Finetunes
13 models