hbertv1-massive-logit_KD-tiny_ffn_1
This model is a fine-tuned version of gokuls/model_v1_complete_training_wt_init_48_tiny_freeze_new_ffn_1 on the massive dataset. It achieves the following results on the evaluation set:
- Loss: 0.6331
- Accuracy: 0.8342
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 33
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
4.296 | 1.0 | 180 | 3.7345 | 0.2081 |
3.5386 | 2.0 | 360 | 3.0526 | 0.2730 |
2.9946 | 3.0 | 540 | 2.6051 | 0.3360 |
2.6126 | 4.0 | 720 | 2.2810 | 0.4215 |
2.3148 | 5.0 | 900 | 2.0377 | 0.4683 |
2.0838 | 6.0 | 1080 | 1.8401 | 0.5371 |
1.9016 | 7.0 | 1260 | 1.6686 | 0.6080 |
1.7431 | 8.0 | 1440 | 1.5358 | 0.6439 |
1.613 | 9.0 | 1620 | 1.4238 | 0.6886 |
1.4952 | 10.0 | 1800 | 1.3339 | 0.7127 |
1.4 | 11.0 | 1980 | 1.2511 | 0.7162 |
1.3069 | 12.0 | 2160 | 1.1877 | 0.7285 |
1.2288 | 13.0 | 2340 | 1.1277 | 0.7329 |
1.1684 | 14.0 | 2520 | 1.0877 | 0.7418 |
1.0971 | 15.0 | 2700 | 1.0285 | 0.7570 |
1.0424 | 16.0 | 2880 | 0.9811 | 0.7619 |
0.9865 | 17.0 | 3060 | 0.9552 | 0.7629 |
0.943 | 18.0 | 3240 | 0.9216 | 0.7742 |
0.9047 | 19.0 | 3420 | 0.8812 | 0.7762 |
0.857 | 20.0 | 3600 | 0.8619 | 0.7821 |
0.8274 | 21.0 | 3780 | 0.8326 | 0.7914 |
0.7955 | 22.0 | 3960 | 0.8086 | 0.7919 |
0.7618 | 23.0 | 4140 | 0.7861 | 0.7973 |
0.7356 | 24.0 | 4320 | 0.7750 | 0.7993 |
0.7109 | 25.0 | 4500 | 0.7580 | 0.8028 |
0.6872 | 26.0 | 4680 | 0.7430 | 0.8077 |
0.6683 | 27.0 | 4860 | 0.7417 | 0.8101 |
0.6503 | 28.0 | 5040 | 0.7132 | 0.8155 |
0.6279 | 29.0 | 5220 | 0.7100 | 0.8106 |
0.6168 | 30.0 | 5400 | 0.6991 | 0.8165 |
0.5981 | 31.0 | 5580 | 0.6935 | 0.8185 |
0.5816 | 32.0 | 5760 | 0.6843 | 0.8200 |
0.5746 | 33.0 | 5940 | 0.6795 | 0.8155 |
0.5602 | 34.0 | 6120 | 0.6775 | 0.8210 |
0.5525 | 35.0 | 6300 | 0.6683 | 0.8244 |
0.5403 | 36.0 | 6480 | 0.6641 | 0.8219 |
0.5289 | 37.0 | 6660 | 0.6598 | 0.8278 |
0.5245 | 38.0 | 6840 | 0.6546 | 0.8278 |
0.518 | 39.0 | 7020 | 0.6523 | 0.8259 |
0.5105 | 40.0 | 7200 | 0.6488 | 0.8283 |
0.4988 | 41.0 | 7380 | 0.6463 | 0.8278 |
0.4971 | 42.0 | 7560 | 0.6414 | 0.8308 |
0.491 | 43.0 | 7740 | 0.6376 | 0.8318 |
0.4901 | 44.0 | 7920 | 0.6395 | 0.8298 |
0.4846 | 45.0 | 8100 | 0.6348 | 0.8298 |
0.4805 | 46.0 | 8280 | 0.6357 | 0.8313 |
0.481 | 47.0 | 8460 | 0.6320 | 0.8313 |
0.4767 | 48.0 | 8640 | 0.6331 | 0.8342 |
0.474 | 49.0 | 8820 | 0.6319 | 0.8328 |
0.4765 | 50.0 | 9000 | 0.6318 | 0.8308 |
Framework versions
- Transformers 4.35.2
- Pytorch 1.14.0a0+410ce96
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.