hbertv1-emotion-logit_KD-tiny_ffn_1
This model is a fine-tuned version of gokuls/model_v1_complete_training_wt_init_48_tiny_freeze_new_ffn_1 on the emotion dataset. It achieves the following results on the evaluation set:
- Loss: 0.4844
- Accuracy: 0.899
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 33
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
3.1687 | 1.0 | 250 | 2.7070 | 0.543 |
2.3056 | 2.0 | 500 | 1.8664 | 0.6295 |
1.5184 | 3.0 | 750 | 1.1853 | 0.7675 |
1.063 | 4.0 | 1000 | 0.9176 | 0.8295 |
0.8313 | 5.0 | 1250 | 0.7328 | 0.8515 |
0.6624 | 6.0 | 1500 | 0.6705 | 0.866 |
0.5695 | 7.0 | 1750 | 0.5983 | 0.8835 |
0.4801 | 8.0 | 2000 | 0.5658 | 0.8825 |
0.4243 | 9.0 | 2250 | 0.5285 | 0.8885 |
0.3828 | 10.0 | 2500 | 0.5358 | 0.884 |
0.3447 | 11.0 | 2750 | 0.4861 | 0.8895 |
0.3245 | 12.0 | 3000 | 0.4948 | 0.8905 |
0.3036 | 13.0 | 3250 | 0.4905 | 0.889 |
0.2803 | 14.0 | 3500 | 0.5018 | 0.8925 |
0.2739 | 15.0 | 3750 | 0.5126 | 0.8915 |
0.2501 | 16.0 | 4000 | 0.4974 | 0.8955 |
0.2382 | 17.0 | 4250 | 0.4936 | 0.891 |
0.2241 | 18.0 | 4500 | 0.4798 | 0.896 |
0.2106 | 19.0 | 4750 | 0.5011 | 0.8915 |
0.2068 | 20.0 | 5000 | 0.4844 | 0.899 |
0.1982 | 21.0 | 5250 | 0.4988 | 0.8915 |
0.1857 | 22.0 | 5500 | 0.4857 | 0.894 |
0.1762 | 23.0 | 5750 | 0.4855 | 0.893 |
0.1798 | 24.0 | 6000 | 0.4832 | 0.893 |
0.1605 | 25.0 | 6250 | 0.4979 | 0.896 |
Framework versions
- Transformers 4.35.2
- Pytorch 1.14.0a0+410ce96
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.