distilbert_add_pre-training-dim-96

This model is a fine-tuned version of distilbert-base-uncased on the wikitext wikitext-103-raw-v1 dataset. It achieves the following results on the evaluation set:

  • Loss: 6.6092
  • Accuracy: 0.1494

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
14.685 1.0 3573 9.3922 0.1240
8.0255 2.0 7146 7.1510 0.1315
7.0152 3.0 10719 6.7861 0.1482
6.8127 4.0 14292 6.7053 0.1493
6.74 5.0 17865 6.6695 0.1474
6.7067 6.0 21438 6.6431 0.1491
6.6871 7.0 25011 6.6204 0.1483
6.6748 8.0 28584 6.6250 0.1473
6.6649 9.0 32157 6.6108 0.1486
6.6596 10.0 35730 6.6140 0.1497
6.6536 11.0 39303 6.6067 0.1493
6.6483 12.0 42876 6.6140 0.1489
6.6463 13.0 46449 6.6096 0.1484
6.6434 14.0 50022 6.5570 0.1526
6.6414 15.0 53595 6.5836 0.1526

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train gokuls/distilbert_add_pre-training-dim-96

Evaluation results