Edit model card

bert_uncased_L-4_H-256_A-4_massive

This model is a fine-tuned version of google/bert_uncased_L-4_H-256_A-4 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7252
  • Accuracy: 0.8362

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.5031 1.0 180 2.8542 0.4437
2.5403 2.0 360 2.0782 0.6394
1.928 3.0 540 1.6213 0.7118
1.542 4.0 720 1.3355 0.7526
1.2771 5.0 900 1.1556 0.7801
1.0852 6.0 1080 1.0223 0.7964
0.939 7.0 1260 0.9331 0.8047
0.8352 8.0 1440 0.8670 0.8146
0.7522 9.0 1620 0.8184 0.8190
0.6847 10.0 1800 0.7887 0.8254
0.6369 11.0 1980 0.7578 0.8254
0.5943 12.0 2160 0.7413 0.8323
0.5652 13.0 2340 0.7288 0.8328
0.5486 14.0 2520 0.7252 0.8362
0.5394 15.0 2700 0.7190 0.8357

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gokuls/bert_uncased_L-4_H-256_A-4_massive

Finetuned
(6)
this model

Evaluation results