gokuls's picture
End of training
0762017
metadata
license: apache-2.0
base_model: google/bert_uncased_L-4_H-256_A-4
tags:
  - generated_from_trainer
datasets:
  - massive
metrics:
  - accuracy
model-index:
  - name: bert_uncased_L-4_H-256_A-4_massive
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: massive
          type: massive
          config: en-US
          split: validation
          args: en-US
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8362026561731432

bert_uncased_L-4_H-256_A-4_massive

This model is a fine-tuned version of google/bert_uncased_L-4_H-256_A-4 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7252
  • Accuracy: 0.8362

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.5031 1.0 180 2.8542 0.4437
2.5403 2.0 360 2.0782 0.6394
1.928 3.0 540 1.6213 0.7118
1.542 4.0 720 1.3355 0.7526
1.2771 5.0 900 1.1556 0.7801
1.0852 6.0 1080 1.0223 0.7964
0.939 7.0 1260 0.9331 0.8047
0.8352 8.0 1440 0.8670 0.8146
0.7522 9.0 1620 0.8184 0.8190
0.6847 10.0 1800 0.7887 0.8254
0.6369 11.0 1980 0.7578 0.8254
0.5943 12.0 2160 0.7413 0.8323
0.5652 13.0 2340 0.7288 0.8328
0.5486 14.0 2520 0.7252 0.8362
0.5394 15.0 2700 0.7190 0.8357

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.1