gokuls commited on
Commit
0762017
·
1 Parent(s): f1ba339

End of training

Browse files
Files changed (1) hide show
  1. README.md +90 -0
README.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/bert_uncased_L-4_H-256_A-4
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - massive
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: bert_uncased_L-4_H-256_A-4_massive
12
+ results:
13
+ - task:
14
+ name: Text Classification
15
+ type: text-classification
16
+ dataset:
17
+ name: massive
18
+ type: massive
19
+ config: en-US
20
+ split: validation
21
+ args: en-US
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.8362026561731432
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # bert_uncased_L-4_H-256_A-4_massive
32
+
33
+ This model is a fine-tuned version of [google/bert_uncased_L-4_H-256_A-4](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4) on the massive dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.7252
36
+ - Accuracy: 0.8362
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 64
57
+ - eval_batch_size: 64
58
+ - seed: 33
59
+ - distributed_type: multi-GPU
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - num_epochs: 15
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 3.5031 | 1.0 | 180 | 2.8542 | 0.4437 |
69
+ | 2.5403 | 2.0 | 360 | 2.0782 | 0.6394 |
70
+ | 1.928 | 3.0 | 540 | 1.6213 | 0.7118 |
71
+ | 1.542 | 4.0 | 720 | 1.3355 | 0.7526 |
72
+ | 1.2771 | 5.0 | 900 | 1.1556 | 0.7801 |
73
+ | 1.0852 | 6.0 | 1080 | 1.0223 | 0.7964 |
74
+ | 0.939 | 7.0 | 1260 | 0.9331 | 0.8047 |
75
+ | 0.8352 | 8.0 | 1440 | 0.8670 | 0.8146 |
76
+ | 0.7522 | 9.0 | 1620 | 0.8184 | 0.8190 |
77
+ | 0.6847 | 10.0 | 1800 | 0.7887 | 0.8254 |
78
+ | 0.6369 | 11.0 | 1980 | 0.7578 | 0.8254 |
79
+ | 0.5943 | 12.0 | 2160 | 0.7413 | 0.8323 |
80
+ | 0.5652 | 13.0 | 2340 | 0.7288 | 0.8328 |
81
+ | 0.5486 | 14.0 | 2520 | 0.7252 | 0.8362 |
82
+ | 0.5394 | 15.0 | 2700 | 0.7190 | 0.8357 |
83
+
84
+
85
+ ### Framework versions
86
+
87
+ - Transformers 4.34.0
88
+ - Pytorch 1.14.0a0+410ce96
89
+ - Datasets 2.14.5
90
+ - Tokenizers 0.14.1