Edit model card

SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Finetuning

The model was finetuned on Coronavirus tweets NLP - Text Classification. The objective was agrupate tweets by sentiment, for this, the dataset was divided into pairs of tweets and the similarity between them defined by the sentiment label. The following labels were used:

  • Extremely Positive and Extremely Negative: 0.0
  • Extremely Positive and Neutral: 0.2
  • Extremely Positive and Positive: 0.7
  • Extremely Positive and Negative: 0.2
  • Extremely Negative and Neutral: 0.2
  • Extremely Negative and Positive: 0.2
  • Extremely Negative and Negative: 0.7
  • Neutral and Positive: 0.5
  • Neutral and Negative: 0.5

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("gianvr/sbert-tunned-covid")
# Run inference
sentences = [
    'Governor Cuomo Please order retail businesses to close My husband has to go to work and expose himself to the virus Store owners will not close unless you tell them they have to I have two friends fighting for their lives PLEASE CLOSE STORES NOW',
    'Clothier @LandsEnd has closed all of its retail stores through March 29th due to coronavirus pandemic.   They will pay all of their employees during the time period.\r\r\n\r\r\nThis is their store at the Hunt Valley Towne Center.  #HuntValley #coronavirus https://t.co/DIwNzAOLeb',
    'Went to the store today. Most canned food is gone. We needed toilet paper and actually got a pack of 12 rolls. We got milk and cat treats as well. Thank god for Save on Foods for still having some stuff. \r\r\nOver 100 cases of Covid-19 in my province so panic buying is common.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Coronavirus tweets NLP - Text Classification

  • Size: 59,616 training samples

  • Columns: sentence1, sentence2, and label

  • Approximate statistics based on the first 1000 samples:

    sentence1 sentence2 label
    type string string float
    details
    • min: 11 tokens
    • mean: 60.62 tokens
    • max: 245 tokens
    • min: 6 tokens
    • mean: 58.31 tokens
    • max: 245 tokens
    • min: 0.0
    • mean: 0.36
    • max: 0.7
  • Samples:

    sentence1 sentence2 label
    BBC Business correspondent just now: "We're going to see a sustained demand for food" Pretty sure that's not news?#CoronaCrisis #covid19uk A warning from Nick Talley, University of Newcastle professor and neuro-gastroenterologist, for those who need to hear it: https://t.co/UzRRswUSTS 0.7
    The announcement(over the PA)at #Woolworths #Marrickville Metro supermarket telling shoppers to maintain #distancing is absurd. In a supermarket aisle there just isn't enough room! #Auspol #NSWpol #coronavirus #Covid_19australia #COVID19Aus Due to the closure of indoor shopping malls to prevent the spread of our Brooklyn Atlantic Office will be closed until further notice We apologize for the inconvenience Please visit our website to find more than 60 online transactions 0.5
    Expert s top tips for supermarket shopping 1 Avoid cash 2 Use a key to type in credit card pin 3 Don t take a receipt 4 Use hand sanitizer once back at your car 5 Consider quarantining food Read more Covid-19 is likely to disrupt these data in the coming months. So far, there is only limited evidence of surging demand in supermarkets stoking prices (mostly non-food and bread). Meanwhile, fruit, veg, and sugary item prices have all crashed. 2/3 0.2
  • Loss: CosineSimilarityLoss with these parameters:

    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3.0
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss
0.0671 500 0.1053
0.1342 1000 0.0802
0.2013 1500 0.0741
0.2684 2000 0.0701
0.3355 2500 0.0682
0.4026 3000 0.0665
0.4697 3500 0.0674
0.5368 4000 0.0667
0.6039 4500 0.0624
0.6710 5000 0.0613
0.7381 5500 0.0589
0.8052 6000 0.0647
0.8722 6500 0.0645
0.9393 7000 0.0626
1.0064 7500 0.0616
1.0735 8000 0.0591
1.1406 8500 0.0601
1.2077 9000 0.0592
1.2748 9500 0.0562
1.3419 10000 0.0586
1.4090 10500 0.0593
1.4761 11000 0.0578
1.5432 11500 0.0574
1.6103 12000 0.0561
1.6774 12500 0.0579
1.7445 13000 0.0556
1.8116 13500 0.0551
1.8787 14000 0.0554
1.9458 14500 0.0537
2.0129 15000 0.0548
2.0800 15500 0.0521
2.1471 16000 0.0534
2.2142 16500 0.0529
2.2813 17000 0.0529
2.3484 17500 0.052
2.4155 18000 0.0527
2.4826 18500 0.0517
2.5497 19000 0.0517
2.6167 19500 0.0497
2.6838 20000 0.0501
2.7509 20500 0.0516
2.8180 21000 0.0515
2.8851 21500 0.0511
2.9522 22000 0.0489

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.2.1
  • Transformers: 4.44.2
  • PyTorch: 2.5.0+cu121
  • Accelerate: 0.34.2
  • Datasets: 3.1.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
43
Safetensors
Model size
22.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gianvr/sbert-tunned-covid

Finetuned
(161)
this model