ASAP_FineTuningBERT_AugV5_k2_task1_organization_fold4

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9068
  • Qwk: -0.0871
  • Mse: 1.9068
  • Rmse: 1.3809

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 10.6318 0.0026 10.6318 3.2606
No log 2.0 4 8.4386 0.0018 8.4386 2.9049
No log 3.0 6 6.7144 0.0018 6.7144 2.5912
No log 4.0 8 5.2728 0.0391 5.2728 2.2963
5.496 5.0 10 4.2280 0.0156 4.2280 2.0562
5.496 6.0 12 3.3525 0.0079 3.3525 1.8310
5.496 7.0 14 2.5522 0.0205 2.5522 1.5976
5.496 8.0 16 2.1207 0.1078 2.1207 1.4563
5.496 9.0 18 1.7779 0.0444 1.7779 1.3334
2.1751 10.0 20 1.5720 0.0420 1.5720 1.2538
2.1751 11.0 22 1.5498 0.0420 1.5498 1.2449
2.1751 12.0 24 1.3146 0.0212 1.3146 1.1465
2.1751 13.0 26 1.2870 0.0212 1.2870 1.1345
2.1751 14.0 28 1.5803 0.0046 1.5803 1.2571
1.7844 15.0 30 1.4139 0.0178 1.4139 1.1891
1.7844 16.0 32 1.1932 0.0238 1.1932 1.0924
1.7844 17.0 34 1.7132 -0.0259 1.7132 1.3089
1.7844 18.0 36 1.7338 -0.0357 1.7338 1.3167
1.7844 19.0 38 1.4304 -0.0112 1.4304 1.1960
1.2631 20.0 40 1.7332 -0.0444 1.7332 1.3165
1.2631 21.0 42 2.0796 -0.0714 2.0796 1.4421
1.2631 22.0 44 1.6976 -0.0270 1.6976 1.3029
1.2631 23.0 46 1.9982 -0.0946 1.9982 1.4136
1.2631 24.0 48 1.6551 -0.0515 1.6551 1.2865
0.6094 25.0 50 1.9776 -0.0588 1.9776 1.4063
0.6094 26.0 52 1.9061 -0.0848 1.9061 1.3806
0.6094 27.0 54 1.3901 -0.0514 1.3901 1.1790
0.6094 28.0 56 1.9364 -0.0710 1.9364 1.3915
0.6094 29.0 58 2.0385 -0.0801 2.0385 1.4277
0.3355 30.0 60 1.4299 -0.0645 1.4299 1.1958
0.3355 31.0 62 1.5245 -0.0850 1.5245 1.2347
0.3355 32.0 64 2.2822 -0.1118 2.2822 1.5107
0.3355 33.0 66 2.0794 -0.1143 2.0794 1.4420
0.3355 34.0 68 1.7600 -0.1230 1.7600 1.3267
0.2183 35.0 70 2.4782 -0.1351 2.4782 1.5742
0.2183 36.0 72 2.5393 -0.1433 2.5393 1.5935
0.2183 37.0 74 1.7955 -0.1146 1.7955 1.3400
0.2183 38.0 76 1.7914 -0.1167 1.7914 1.3384
0.2183 39.0 78 2.1912 -0.1112 2.1912 1.4803
0.1871 40.0 80 1.9314 -0.1100 1.9314 1.3897
0.1871 41.0 82 1.8203 -0.1103 1.8203 1.3492
0.1871 42.0 84 2.0008 -0.1044 2.0008 1.4145
0.1871 43.0 86 2.2055 -0.0943 2.2055 1.4851
0.1871 44.0 88 2.0233 -0.0943 2.0233 1.4224
0.107 45.0 90 1.6122 -0.0854 1.6122 1.2697
0.107 46.0 92 1.7915 -0.1136 1.7915 1.3385
0.107 47.0 94 2.3185 -0.1119 2.3185 1.5227
0.107 48.0 96 2.0651 -0.0926 2.0651 1.4371
0.107 49.0 98 1.5548 -0.0895 1.5548 1.2469
0.1598 50.0 100 1.5350 -0.0826 1.5350 1.2390
0.1598 51.0 102 1.9385 -0.1104 1.9385 1.3923
0.1598 52.0 104 2.2863 -0.1051 2.2863 1.5121
0.1598 53.0 106 1.9998 -0.1165 1.9998 1.4141
0.1598 54.0 108 1.7690 -0.0894 1.7690 1.3300
0.1154 55.0 110 1.9243 -0.0739 1.9243 1.3872
0.1154 56.0 112 2.0876 -0.0923 2.0876 1.4448
0.1154 57.0 114 2.0650 -0.0864 2.0650 1.4370
0.1154 58.0 116 1.8476 -0.0572 1.8476 1.3592
0.1154 59.0 118 1.8643 -0.0631 1.8643 1.3654
0.0781 60.0 120 2.0839 -0.0647 2.0839 1.4436
0.0781 61.0 122 1.9337 -0.0703 1.9337 1.3906
0.0781 62.0 124 1.9155 -0.0692 1.9155 1.3840
0.0781 63.0 126 1.9222 -0.0708 1.9222 1.3864
0.0781 64.0 128 1.8361 -0.1008 1.8361 1.3550
0.0858 65.0 130 2.0123 -0.0852 2.0123 1.4185
0.0858 66.0 132 1.9921 -0.0885 1.9921 1.4114
0.0858 67.0 134 1.9462 -0.1032 1.9462 1.3951
0.0858 68.0 136 1.8214 -0.1001 1.8214 1.3496
0.0858 69.0 138 1.8356 -0.0973 1.8356 1.3548
0.0674 70.0 140 1.9821 -0.0733 1.9821 1.4079
0.0674 71.0 142 2.1978 -0.1060 2.1978 1.4825
0.0674 72.0 144 2.0422 -0.0747 2.0422 1.4291
0.0674 73.0 146 1.8078 -0.0725 1.8078 1.3445
0.0674 74.0 148 1.8364 -0.0645 1.8364 1.3551
0.0682 75.0 150 2.0396 -0.0786 2.0396 1.4281
0.0682 76.0 152 2.0517 -0.0788 2.0517 1.4324
0.0682 77.0 154 1.8596 -0.0708 1.8596 1.3637
0.0682 78.0 156 1.8009 -0.0743 1.8009 1.3420
0.0682 79.0 158 1.8874 -0.0778 1.8874 1.3738
0.0559 80.0 160 2.0043 -0.0919 2.0043 1.4157
0.0559 81.0 162 1.9238 -0.0796 1.9238 1.3870
0.0559 82.0 164 1.7809 -0.0650 1.7809 1.3345
0.0559 83.0 166 1.8109 -0.0762 1.8109 1.3457
0.0559 84.0 168 1.9396 -0.0819 1.9396 1.3927
0.0517 85.0 170 1.9774 -0.0836 1.9774 1.4062
0.0517 86.0 172 1.8979 -0.0888 1.8979 1.3776
0.0517 87.0 174 1.8175 -0.0727 1.8175 1.3481
0.0517 88.0 176 1.8569 -0.0720 1.8569 1.3627
0.0517 89.0 178 1.8994 -0.0958 1.8994 1.3782
0.0585 90.0 180 1.9564 -0.0899 1.9564 1.3987
0.0585 91.0 182 1.9520 -0.0958 1.9520 1.3972
0.0585 92.0 184 1.8851 -0.0868 1.8851 1.3730
0.0585 93.0 186 1.8087 -0.0736 1.8087 1.3449
0.0585 94.0 188 1.7820 -0.0737 1.7820 1.3349
0.0541 95.0 190 1.7973 -0.0777 1.7973 1.3406
0.0541 96.0 192 1.8206 -0.0835 1.8206 1.3493
0.0541 97.0 194 1.8549 -0.0845 1.8549 1.3620
0.0541 98.0 196 1.8897 -0.0922 1.8897 1.3747
0.0541 99.0 198 1.9029 -0.0871 1.9029 1.3794
0.0547 100.0 200 1.9068 -0.0871 1.9068 1.3809

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for genki10/ASAP_FineTuningBERT_AugV5_k2_task1_organization_fold4

Finetuned
(2422)
this model