fnet-base-finetuned-qqp

This model is a fine-tuned version of google/fnet-base on the GLUE QQP dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3686
  • Accuracy: 0.8847
  • F1: 0.8466
  • Combined Score: 0.8657

The model was fine-tuned to compare google/fnet-base as introduced in this paper against bert-base-cased.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

This model is trained using the run_glue script. The following command was used:

#!/usr/bin/bash


#!/usr/bin/bash


python ../run_glue.py \\n  --model_name_or_path google/fnet-base \\n  --task_name qqp \\n  --do_train \\n  --do_eval \\n  --max_seq_length 512 \\n  --per_device_train_batch_size 16 \\n  --learning_rate 2e-5 \\n  --num_train_epochs 3 \\n  --output_dir fnet-base-finetuned-qqp \\n  --push_to_hub \\n  --hub_strategy all_checkpoints \\n  --logging_strategy epoch \\n  --save_strategy epoch \\n  --evaluation_strategy epoch \\n```

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | F1     | Combined Score |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:|
| 0.3484        | 1.0   | 22741 | 0.3014          | 0.8676   | 0.8297 | 0.8487         |
| 0.2387        | 2.0   | 45482 | 0.3011          | 0.8801   | 0.8429 | 0.8615         |
| 0.1739        | 3.0   | 68223 | 0.3686          | 0.8847   | 0.8466 | 0.8657         |


### Framework versions

- Transformers 4.11.0.dev0
- Pytorch 1.9.0
- Datasets 1.12.1
- Tokenizers 0.10.3
Downloads last month
16
Hosted inference API
Text Classification
Examples
Examples
This model can be loaded on the Inference API on-demand.
Evaluation results