Edit model card

ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v7

This model is a fine-tuned version of gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v6 on the GARY109/AI_LIGHT_DANCE - ONSET-STEPMANIA2 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0424
  • Wer: 0.6512

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.9303 1.0 12031 1.1160 0.6712
0.8181 2.0 24062 1.0601 0.6608
0.7861 3.0 36093 1.0478 0.6520
0.767 4.0 48124 1.0617 0.6526
0.797 5.0 60155 1.0424 0.6512
0.834 6.0 72186 1.0519 0.6542
0.7915 7.0 84217 1.0508 0.6494
0.8106 8.0 96248 1.0753 0.6449
0.7512 9.0 108279 1.1223 0.6592
0.777 10.0 120310 1.1201 0.6535
0.7631 11.0 132341 1.0780 0.6512
0.7465 12.0 144372 1.0822 0.6499
0.826 13.0 156403 1.0706 0.6445
0.7552 14.0 168434 1.0862 0.6449
0.8279 15.0 180465 1.1162 0.6461
0.7769 16.0 192496 1.1023 0.6420
0.7918 17.0 204527 1.1085 0.6456
0.6941 18.0 216558 1.1139 0.6417
0.7379 19.0 228589 1.1126 0.6410
0.7467 20.0 240620 1.1102 0.6369
0.8045 21.0 252651 1.1191 0.6376
0.7059 22.0 264682 1.1285 0.6381
0.7008 23.0 276713 1.1328 0.6377
0.7816 24.0 288744 1.1326 0.6366
0.7426 25.0 300775 1.1420 0.6362
0.7226 26.0 312806 1.1326 0.6350
0.665 27.0 324837 1.1419 0.6346
0.7184 28.0 336868 1.1480 0.6346
0.77 29.0 348899 1.1476 0.6343
0.727 30.0 360930 1.1494 0.6348

Framework versions

  • Transformers 4.21.0.dev0
  • Pytorch 1.9.1+cu102
  • Datasets 2.3.3.dev0
  • Tokenizers 0.12.1
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.