hubert-base-ls960
This model is a fine-tuned version of facebook/hubert-base-ls960 on the galsenai/waxal_dataset dataset. It achieves the following results on the evaluation set:
- Loss: 2.1857
- Accuracy: 0.6442
- Precision: 0.8369
- F1: 0.7121
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 30
- eval_batch_size: 30
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 120
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 32.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | F1 |
---|---|---|---|---|---|---|
4.523 | 2.53 | 500 | 5.1547 | 0.0205 | 0.0047 | 0.0037 |
3.4187 | 5.05 | 1000 | 4.6287 | 0.0337 | 0.0256 | 0.0163 |
2.3533 | 7.58 | 1500 | 4.2550 | 0.0944 | 0.1033 | 0.0641 |
1.7145 | 10.1 | 2000 | 3.9540 | 0.1095 | 0.2091 | 0.0964 |
1.3245 | 12.63 | 2500 | 3.8557 | 0.1758 | 0.3609 | 0.1859 |
1.0729 | 15.15 | 3000 | 3.7411 | 0.2247 | 0.4918 | 0.2537 |
0.8955 | 17.68 | 3500 | 3.2683 | 0.3789 | 0.6162 | 0.4256 |
0.7697 | 20.2 | 4000 | 2.8749 | 0.4612 | 0.7106 | 0.5171 |
0.6864 | 22.73 | 4500 | 2.7251 | 0.5169 | 0.7437 | 0.5779 |
0.6061 | 25.25 | 5000 | 2.5061 | 0.5631 | 0.8043 | 0.6335 |
0.5777 | 27.78 | 5500 | 2.2830 | 0.6177 | 0.8183 | 0.6837 |
0.5304 | 30.3 | 6000 | 2.1857 | 0.6442 | 0.8369 | 0.7121 |
Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.9.1.dev0
- Tokenizers 0.13.2
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.