distilbert-finetuned-lr1e-07-epochs50

This model is a fine-tuned version of distilbert-base-cased-distilled-squad on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 5.0791

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-07
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
No log 1.0 10 6.3771
No log 2.0 20 6.2726
No log 3.0 30 6.1763
No log 4.0 40 6.0874
No log 5.0 50 6.0031
No log 6.0 60 5.9324
No log 7.0 70 5.8631
No log 8.0 80 5.7979
No log 9.0 90 5.7419
No log 10.0 100 5.6885
No log 11.0 110 5.6398
No log 12.0 120 5.5935
No log 13.0 130 5.5529
No log 14.0 140 5.5161
No log 15.0 150 5.4811
No log 16.0 160 5.4510
No log 17.0 170 5.4228
No log 18.0 180 5.3964
No log 19.0 190 5.3720
No log 20.0 200 5.3489
No log 21.0 210 5.3276
No log 22.0 220 5.3074
No log 23.0 230 5.2877
No log 24.0 240 5.2698
No log 25.0 250 5.2526
No log 26.0 260 5.2368
No log 27.0 270 5.2228
No log 28.0 280 5.2092
No log 29.0 290 5.1971
No log 30.0 300 5.1854
No log 31.0 310 5.1746
No log 32.0 320 5.1642
No log 33.0 330 5.1541
No log 34.0 340 5.1452
No log 35.0 350 5.1367
No log 36.0 360 5.1286
No log 37.0 370 5.1218
No log 38.0 380 5.1156
No log 39.0 390 5.1093
No log 40.0 400 5.1039
No log 41.0 410 5.0988
No log 42.0 420 5.0947
No log 43.0 430 5.0909
No log 44.0 440 5.0877
No log 45.0 450 5.0850
No log 46.0 460 5.0829
No log 47.0 470 5.0811
No log 48.0 480 5.0799
No log 49.0 490 5.0793
5.1249 50.0 500 5.0791

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.