vit-emotion_classification
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.2112
- Accuracy: 0.5938
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 40 | 1.8928 | 0.375 |
No log | 2.0 | 80 | 1.5709 | 0.375 |
No log | 3.0 | 120 | 1.4385 | 0.4938 |
No log | 4.0 | 160 | 1.3183 | 0.5437 |
No log | 5.0 | 200 | 1.2514 | 0.5813 |
No log | 6.0 | 240 | 1.2412 | 0.5563 |
No log | 7.0 | 280 | 1.2048 | 0.5875 |
No log | 8.0 | 320 | 1.1530 | 0.6188 |
No log | 9.0 | 360 | 1.1870 | 0.55 |
No log | 10.0 | 400 | 1.2160 | 0.5563 |
No log | 11.0 | 440 | 1.1182 | 0.5563 |
No log | 12.0 | 480 | 1.1162 | 0.5938 |
1.0857 | 13.0 | 520 | 1.0960 | 0.6312 |
1.0857 | 14.0 | 560 | 1.1724 | 0.55 |
1.0857 | 15.0 | 600 | 1.1100 | 0.625 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
- Downloads last month
- 28
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for gabrielganan/vit-emotion_classification
Base model
google/vit-base-patch16-224-in21k