Model description
[More Information Needed]
Intended uses & limitations
[More Information Needed]
Training Procedure
[More Information Needed]
Hyperparameters
Click to expand
Hyperparameter | Value |
---|---|
memory | |
steps | [('preprocessor', ColumnTransformer(transformers=[('numerical_pipeline', Pipeline(steps=[('log_transformations', FunctionTransformer(func=<ufunc 'log1p'>)), ('imputer', SimpleImputer(strategy='median')), ('scaler', RobustScaler())]), ['prg', 'pl', 'pr', 'sk', 'ts', 'm11', 'bd2', 'age']), ('categorical_pipeline', Pipeline(steps=[('as_categorical', FunctionTransformer(func=<function as_... handle_unknown='infrequent_if_exist', sparse_output=False))]), ['insurance']), ('feature_creation_pipeline', Pipeline(steps=[('feature_creation', FunctionTransformer(func=<function feature_creation at 0x0000013CE41B7C40>)), ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(drop='first', handle_unknown='ignore', sparse_output=False))]), ['age'])])), ('feature-selection', SelectKBest(k='all', score_func=<function mutual_info_classif at 0x0000013CE4234F40>)), ('classifier', XGBClassifier(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=20, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=10, n_jobs=-1, num_parallel_tree=None, random_state=2024, ...))] |
verbose | False |
preprocessor | ColumnTransformer(transformers=[('numerical_pipeline', Pipeline(steps=[('log_transformations', FunctionTransformer(func=<ufunc 'log1p'>)), ('imputer', SimpleImputer(strategy='median')), ('scaler', RobustScaler())]), ['prg', 'pl', 'pr', 'sk', 'ts', 'm11', 'bd2', 'age']), ('categorical_pipeline', Pipeline(steps=[('as_categorical', FunctionTransformer(func=<function as_... handle_unknown='infrequent_if_exist', sparse_output=False))]), ['insurance']), ('feature_creation_pipeline', Pipeline(steps=[('feature_creation', FunctionTransformer(func=<function feature_creation at 0x0000013CE41B7C40>)), ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(drop='first', handle_unknown='ignore', sparse_output=False))]), ['age'])]) |
feature-selection | SelectKBest(k='all', score_func=<function mutual_info_classif at 0x0000013CE4234F40>) |
classifier | XGBClassifier(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=20, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=10, n_jobs=-1, num_parallel_tree=None, random_state=2024, ...) |
preprocessor__force_int_remainder_cols | True |
preprocessor__n_jobs | |
preprocessor__remainder | drop |
preprocessor__sparse_threshold | 0.3 |
preprocessor__transformer_weights | |
preprocessor__transformers | [('numerical_pipeline', Pipeline(steps=[('log_transformations', FunctionTransformer(func=<ufunc 'log1p'>)), ('imputer', SimpleImputer(strategy='median')), ('scaler', RobustScaler())]), ['prg', 'pl', 'pr', 'sk', 'ts', 'm11', 'bd2', 'age']), ('categorical_pipeline', Pipeline(steps=[('as_categorical', FunctionTransformer(func=<function as_category at 0x0000013CE41B7600>)), ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist', sparse_output=False))]), ['insurance']), ('feature_creation_pipeline', Pipeline(steps=[('feature_creation', FunctionTransformer(func=<function feature_creation at 0x0000013CE41B7C40>)), ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(drop='first', handle_unknown='ignore', sparse_output=False))]), ['age'])] |
preprocessor__verbose | False |
preprocessor__verbose_feature_names_out | True |
preprocessor__numerical_pipeline | Pipeline(steps=[('log_transformations', FunctionTransformer(func=<ufunc 'log1p'>)), ('imputer', SimpleImputer(strategy='median')), ('scaler', RobustScaler())]) |
preprocessor__categorical_pipeline | Pipeline(steps=[('as_categorical', FunctionTransformer(func=<function as_category at 0x0000013CE41B7600>)), ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist', sparse_output=False))]) |
preprocessor__feature_creation_pipeline | Pipeline(steps=[('feature_creation', FunctionTransformer(func=<function feature_creation at 0x0000013CE41B7C40>)), ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(drop='first', handle_unknown='ignore', sparse_output=False))]) |
preprocessor__numerical_pipeline__memory | |
preprocessor__numerical_pipeline__steps | [('log_transformations', FunctionTransformer(func=<ufunc 'log1p'>)), ('imputer', SimpleImputer(strategy='median')), ('scaler', RobustScaler())] |
preprocessor__numerical_pipeline__verbose | False |
preprocessor__numerical_pipeline__log_transformations | FunctionTransformer(func=<ufunc 'log1p'>) |
preprocessor__numerical_pipeline__imputer | SimpleImputer(strategy='median') |
preprocessor__numerical_pipeline__scaler | RobustScaler() |
preprocessor__numerical_pipeline__log_transformations__accept_sparse | False |
preprocessor__numerical_pipeline__log_transformations__check_inverse | True |
preprocessor__numerical_pipeline__log_transformations__feature_names_out | |
preprocessor__numerical_pipeline__log_transformations__func | <ufunc 'log1p'> |
preprocessor__numerical_pipeline__log_transformations__inv_kw_args | |
preprocessor__numerical_pipeline__log_transformations__inverse_func | |
preprocessor__numerical_pipeline__log_transformations__kw_args | |
preprocessor__numerical_pipeline__log_transformations__validate | False |
preprocessor__numerical_pipeline__imputer__add_indicator | False |
preprocessor__numerical_pipeline__imputer__copy | True |
preprocessor__numerical_pipeline__imputer__fill_value | |
preprocessor__numerical_pipeline__imputer__keep_empty_features | False |
preprocessor__numerical_pipeline__imputer__missing_values | nan |
preprocessor__numerical_pipeline__imputer__strategy | median |
preprocessor__numerical_pipeline__scaler__copy | True |
preprocessor__numerical_pipeline__scaler__quantile_range | (25.0, 75.0) |
preprocessor__numerical_pipeline__scaler__unit_variance | False |
preprocessor__numerical_pipeline__scaler__with_centering | True |
preprocessor__numerical_pipeline__scaler__with_scaling | True |
preprocessor__categorical_pipeline__memory | |
preprocessor__categorical_pipeline__steps | [('as_categorical', FunctionTransformer(func=<function as_category at 0x0000013CE41B7600>)), ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist', sparse_output=False))] |
preprocessor__categorical_pipeline__verbose | False |
preprocessor__categorical_pipeline__as_categorical | FunctionTransformer(func=<function as_category at 0x0000013CE41B7600>) |
preprocessor__categorical_pipeline__imputer | SimpleImputer(strategy='most_frequent') |
preprocessor__categorical_pipeline__encoder | OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist', sparse_output=False) |
preprocessor__categorical_pipeline__as_categorical__accept_sparse | False |
preprocessor__categorical_pipeline__as_categorical__check_inverse | True |
preprocessor__categorical_pipeline__as_categorical__feature_names_out | |
preprocessor__categorical_pipeline__as_categorical__func | <function as_category at 0x0000013CE41B7600> |
preprocessor__categorical_pipeline__as_categorical__inv_kw_args | |
preprocessor__categorical_pipeline__as_categorical__inverse_func | |
preprocessor__categorical_pipeline__as_categorical__kw_args | |
preprocessor__categorical_pipeline__as_categorical__validate | False |
preprocessor__categorical_pipeline__imputer__add_indicator | False |
preprocessor__categorical_pipeline__imputer__copy | True |
preprocessor__categorical_pipeline__imputer__fill_value | |
preprocessor__categorical_pipeline__imputer__keep_empty_features | False |
preprocessor__categorical_pipeline__imputer__missing_values | nan |
preprocessor__categorical_pipeline__imputer__strategy | most_frequent |
preprocessor__categorical_pipeline__encoder__categories | auto |
preprocessor__categorical_pipeline__encoder__drop | first |
preprocessor__categorical_pipeline__encoder__dtype | <class 'numpy.float64'> |
preprocessor__categorical_pipeline__encoder__feature_name_combiner | concat |
preprocessor__categorical_pipeline__encoder__handle_unknown | infrequent_if_exist |
preprocessor__categorical_pipeline__encoder__max_categories | |
preprocessor__categorical_pipeline__encoder__min_frequency | |
preprocessor__categorical_pipeline__encoder__sparse_output | False |
preprocessor__feature_creation_pipeline__memory | |
preprocessor__feature_creation_pipeline__steps | [('feature_creation', FunctionTransformer(func=<function feature_creation at 0x0000013CE41B7C40>)), ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(drop='first', handle_unknown='ignore', sparse_output=False))] |
preprocessor__feature_creation_pipeline__verbose | False |
preprocessor__feature_creation_pipeline__feature_creation | FunctionTransformer(func=<function feature_creation at 0x0000013CE41B7C40>) |
preprocessor__feature_creation_pipeline__imputer | SimpleImputer(strategy='most_frequent') |
preprocessor__feature_creation_pipeline__encoder | OneHotEncoder(drop='first', handle_unknown='ignore', sparse_output=False) |
preprocessor__feature_creation_pipeline__feature_creation__accept_sparse | False |
preprocessor__feature_creation_pipeline__feature_creation__check_inverse | True |
preprocessor__feature_creation_pipeline__feature_creation__feature_names_out | |
preprocessor__feature_creation_pipeline__feature_creation__func | <function feature_creation at 0x0000013CE41B7C40> |
preprocessor__feature_creation_pipeline__feature_creation__inv_kw_args | |
preprocessor__feature_creation_pipeline__feature_creation__inverse_func | |
preprocessor__feature_creation_pipeline__feature_creation__kw_args | |
preprocessor__feature_creation_pipeline__feature_creation__validate | False |
preprocessor__feature_creation_pipeline__imputer__add_indicator | False |
preprocessor__feature_creation_pipeline__imputer__copy | True |
preprocessor__feature_creation_pipeline__imputer__fill_value | |
preprocessor__feature_creation_pipeline__imputer__keep_empty_features | False |
preprocessor__feature_creation_pipeline__imputer__missing_values | nan |
preprocessor__feature_creation_pipeline__imputer__strategy | most_frequent |
preprocessor__feature_creation_pipeline__encoder__categories | auto |
preprocessor__feature_creation_pipeline__encoder__drop | first |
preprocessor__feature_creation_pipeline__encoder__dtype | <class 'numpy.float64'> |
preprocessor__feature_creation_pipeline__encoder__feature_name_combiner | concat |
preprocessor__feature_creation_pipeline__encoder__handle_unknown | ignore |
preprocessor__feature_creation_pipeline__encoder__max_categories | |
preprocessor__feature_creation_pipeline__encoder__min_frequency | |
preprocessor__feature_creation_pipeline__encoder__sparse_output | False |
feature-selection__k | all |
feature-selection__score_func | <function mutual_info_classif at 0x0000013CE4234F40> |
classifier__objective | binary:logistic |
classifier__base_score | |
classifier__booster | |
classifier__callbacks | |
classifier__colsample_bylevel | |
classifier__colsample_bynode | |
classifier__colsample_bytree | |
classifier__device | |
classifier__early_stopping_rounds | |
classifier__enable_categorical | False |
classifier__eval_metric | |
classifier__feature_types | |
classifier__gamma | |
classifier__grow_policy | |
classifier__importance_type | |
classifier__interaction_constraints | |
classifier__learning_rate | |
classifier__max_bin | |
classifier__max_cat_threshold | |
classifier__max_cat_to_onehot | |
classifier__max_delta_step | |
classifier__max_depth | 20 |
classifier__max_leaves | |
classifier__min_child_weight | |
classifier__missing | nan |
classifier__monotone_constraints | |
classifier__multi_strategy | |
classifier__n_estimators | 10 |
classifier__n_jobs | -1 |
classifier__num_parallel_tree | |
classifier__random_state | 2024 |
classifier__reg_alpha | |
classifier__reg_lambda | |
classifier__sampling_method | |
classifier__scale_pos_weight | |
classifier__subsample | |
classifier__tree_method | |
classifier__validate_parameters | |
classifier__verbosity | |
classifier__verbose | 0 |
Model Plot
Pipeline(steps=[('preprocessor',ColumnTransformer(transformers=[('numerical_pipeline',Pipeline(steps=[('log_transformations',FunctionTransformer(func=<ufunc 'log1p'>)),('imputer',SimpleImputer(strategy='median')),('scaler',RobustScaler())]),['prg', 'pl', 'pr', 'sk','ts', 'm11', 'bd2', 'age']),('categorical_pipeline',Pipeline(steps=[('as_categorical',Funct...feature_types=None, gamma=None, grow_policy=None,importance_type=None,interaction_constraints=None, learning_rate=None,max_bin=None, max_cat_threshold=None,max_cat_to_onehot=None, max_delta_step=None,max_depth=20, max_leaves=None,min_child_weight=None, missing=nan,monotone_constraints=None, multi_strategy=None,n_estimators=10, n_jobs=-1,num_parallel_tree=None, random_state=2024, ...))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Pipeline(steps=[('preprocessor',ColumnTransformer(transformers=[('numerical_pipeline',Pipeline(steps=[('log_transformations',FunctionTransformer(func=<ufunc 'log1p'>)),('imputer',SimpleImputer(strategy='median')),('scaler',RobustScaler())]),['prg', 'pl', 'pr', 'sk','ts', 'm11', 'bd2', 'age']),('categorical_pipeline',Pipeline(steps=[('as_categorical',Funct...feature_types=None, gamma=None, grow_policy=None,importance_type=None,interaction_constraints=None, learning_rate=None,max_bin=None, max_cat_threshold=None,max_cat_to_onehot=None, max_delta_step=None,max_depth=20, max_leaves=None,min_child_weight=None, missing=nan,monotone_constraints=None, multi_strategy=None,n_estimators=10, n_jobs=-1,num_parallel_tree=None, random_state=2024, ...))])
ColumnTransformer(transformers=[('numerical_pipeline',Pipeline(steps=[('log_transformations',FunctionTransformer(func=<ufunc 'log1p'>)),('imputer',SimpleImputer(strategy='median')),('scaler', RobustScaler())]),['prg', 'pl', 'pr', 'sk', 'ts', 'm11', 'bd2','age']),('categorical_pipeline',Pipeline(steps=[('as_categorical',FunctionTransformer(func=<function as_...handle_unknown='infrequent_if_exist',sparse_output=False))]),['insurance']),('feature_creation_pipeline',Pipeline(steps=[('feature_creation',FunctionTransformer(func=<function feature_creation at 0x0000013CE41B7C40>)),('imputer',SimpleImputer(strategy='most_frequent')),('encoder',OneHotEncoder(drop='first',handle_unknown='ignore',sparse_output=False))]),['age'])])
['prg', 'pl', 'pr', 'sk', 'ts', 'm11', 'bd2', 'age']
FunctionTransformer(func=<ufunc 'log1p'>)
SimpleImputer(strategy='median')
RobustScaler()
['insurance']
FunctionTransformer(func=<function as_category at 0x0000013CE41B7600>)
SimpleImputer(strategy='most_frequent')
OneHotEncoder(drop='first', handle_unknown='infrequent_if_exist',sparse_output=False)
['age']
FunctionTransformer(func=<function feature_creation at 0x0000013CE41B7C40>)
SimpleImputer(strategy='most_frequent')
OneHotEncoder(drop='first', handle_unknown='ignore', sparse_output=False)
SelectKBest(k='all',score_func=<function mutual_info_classif at 0x0000013CE4234F40>)
XGBClassifier(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, device=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None, feature_types=None,gamma=None, grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=None, max_bin=None,max_cat_threshold=None, max_cat_to_onehot=None,max_delta_step=None, max_depth=20, max_leaves=None,min_child_weight=None, missing=nan, monotone_constraints=None,multi_strategy=None, n_estimators=10, n_jobs=-1,num_parallel_tree=None, random_state=2024, ...)
Evaluation Results
[More Information Needed]
How to Get Started with the Model
[More Information Needed]
Model Card Authors
This model card is written by following authors:
[More Information Needed]
Model Card Contact
You can contact the model card authors through following channels: [More Information Needed]
Citation
Below you can find information related to citation.
BibTeX:
[More Information Needed]
citation_bibtex
bibtex @inproceedings{...,year={2024}}
get_started_code
import joblib clf = joblib.load(../models/XGBClassifier.joblib)
model_card_authors
Gabriel Okundaye
limitations
This model needs further feature engineering to improve the f1 weighted score. Collaborate on with me here GitHub
model_description
This is a XGBClassifier model trained on Sepsis dataset from this kaggle dataset.
roc_auc_curve
feature_importances
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.