Model Card for LuxEmbedder
Model Summary
LuxEmbedder is a sentence-transformers model that transforms sentences and paragraphs into 768-dimensional dense vectors, enabling tasks like clustering and semantic search, with a primary focus on Luxembourgish. Leveraging a cross-lingual approach, LuxEmbedder effectively handles Luxembourgish text while also mapping input from 108 other languages into a shared embedding space. For the full list of supported languages, refer to the sentence-transformers/LaBSE documentation, as LaBSE served as the foundation for LuxEmbedder.
This model was introduced in LuxEmbedder: A Cross-Lingual Approach to Enhanced Luxembourgish Sentence Embeddings (Philippy et al., 2024). It addresses the challenges of limited parallel data for Luxembourgish by creating LuxAlign, a high-quality, human-generated parallel dataset, which forms the basis for LuxEmbedder’s competitive performance across cross-lingual and monolingual tasks for Luxembourgish.
With the release of LuxEmbedder, we also provide a Luxembourgish paraphrase detection benchmark, ParaLux to encourage further exploration and development in NLP for Luxembourgish.
- Model type: Sentence Embedding Model
- Language(s) (NLP): Luxembourgish + 108 additional languages
- License: Creative Commons Attribution Non Commercial 4.0 International (CC BY-NC 4.0)
- Architecture: Based on LaBSE
- Paper: LuxEmbedder: A Cross-Lingual Approach to Enhanced Luxembourgish Sentence Embeddings (Philippy et al., 2024)
- Repository: https://github.com/fredxlpy/LuxEmbedder
Example Usage
pip install -U sentence-transformers
from sentence_transformers import SentenceTransformer, util
import numpy as np
import pandas as pd
# Load the model
model = SentenceTransformer('fredxlpy/LuxEmbedder')
# Example sentences
data = pd.DataFrame({
"id": ["lb1", "lb2", "lb3", "en1", "en2", "en3", "zh1", "zh2", "zh3"],
"text": [
"Moien, wéi geet et?", # Luxembourgish: Hello, how are you?
"D'Wieder ass haut schéin.", # Luxembourgish: The weather is beautiful today.
"Ech schaffen am Büro.", # Luxembourgish: I work in the office.
"Hello, how are you?",
"The weather is great today.",
"I work in an office.",
"你好, 你怎么样?", # Chinese: Hello, how are you?
"今天天气很好.", # Chinese: The weather is very good today.
"我在办公室工作." # Chinese: I work in an office.
]
})
# Encode the sentences to obtain sentence embeddings
embeddings = model.encode(data["text"].tolist(), convert_to_tensor=True)
# Compute the cosine similarity matrix
cosine_similarity_matrix = util.cos_sim(embeddings, embeddings).cpu().numpy()
# Create a DataFrame for the similarity matrix with "id" as row and column labels
similarity_df = pd.DataFrame(
np.round(cosine_similarity_matrix, 2),
index=data["id"],
columns=data["id"]
)
# Display the similarity matrix
print("Cosine Similarity Matrix:")
print(similarity_df)
# Cosine Similarity Matrix:
# id lb1 lb2 lb3 en1 en2 en3 zh1 zh2 zh3
# id
# lb1 1.00 0.60 0.42 0.96 0.59 0.40 0.95 0.62 0.43
# lb2 0.60 1.00 0.41 0.56 0.99 0.39 0.56 0.99 0.42
# lb3 0.42 0.41 1.00 0.44 0.42 0.99 0.46 0.43 0.99
# en1 0.96 0.56 0.44 1.00 0.55 0.43 0.99 0.58 0.46
# en2 0.59 0.99 0.42 0.55 1.00 0.40 0.55 0.99 0.43
# en3 0.40 0.39 0.99 0.43 0.40 1.00 0.44 0.41 0.99
# zh1 0.95 0.56 0.46 0.99 0.55 0.44 1.00 0.58 0.47
# zh2 0.62 0.99 0.43 0.58 0.99 0.41 0.58 1.00 0.44
# zh3 0.43 0.42 0.99 0.46 0.43 0.99 0.47 0.44 1.00
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
Citation
@misc{philippy2024luxembedder,
title={LuxEmbedder: A Cross-Lingual Approach to Enhanced Luxembourgish Sentence Embeddings},
author={Fred Philippy and Siwen Guo and Jacques Klein and Tegawendé F. Bissyandé},
year={2024},
eprint={2412.03331},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2412.03331},
}
- Downloads last month
- 22
Model tree for fredxlpy/LuxEmbedder
Base model
sentence-transformers/LaBSE