I've got my hands on an AMD Instinct MI100. It's about the same price used as a V100 but on paper has more TOPS (V100 14TOPS vs MI100 23TOPS) also the HBM has faster clock so the memory bandwidth is 1.2TB/s. For quantized inference it's a beast (MI50 was also surprisingly fast)
For LORA training with this quick test I could not make the bnb config works so I'm running the FT on the fill size model.
Will share all the install, setup and setting I've learned in a blog post, together with the cooling shroud 3D design.
This week we are releasing the first framework unit in the course and itβs on smolagents. This is what the unit covers:
- why should you use smolagents vs another library? - how to build agents that use code - build multiagents systems - use vision language models for browser use
The team has been working flat out on this for a few weeks. Led by @sergiopaniego and supported by smolagents author @m-ric.
I found if we apply the reasoning system prompt (that has been published on the NousResearch/DeepHermes-3-Llama-3-8B-Preview model card) other models are also react to it and start mimicking reasoning. Some better some worse. I've seen internal monologue and self questioning.
β Evaluating Long Context #2: SCROLLS and ZeroSCROLLS
In this series of posts about tracing the history of long context evaluation, we started with Long Range Arena (LRA). Introduced in 2020, Long Range Arens (LRA) is one of the earliest benchmarks designed to tackle the challenge of long context evaluation. But it wasn't introduced to evaluate LLMs, but rather the transformer architecture in general.
π The SCROLLS benchmark, introduced in 2022, addresses this gap in NLP/LLM research. SCROLLS challenges models with tasks that require reasoning over extended sequences (according to 2022 standards). So, what does it offer?
1οΈβ£ Long Text Focus: SCROLLS (unlike LRA) focus mainly on text and contain inputs with thousands of words, testing models' ability to synthesize information across lengthy documents. 2οΈβ£ Diverse Tasks: Includes summarization, question answering, and natural language inference across domains like literature, science, and business. 3οΈβ£ Unified Format: All datasets are available in a text-to-text format, facilitating easy evaluation and comparison of models.
Building on SCROLLS, ZeroSCROLLS takes long text evaluation to the next level by focusing on zero-shot learning. Other features include:
1οΈβ£ New Tasks: Introduces tasks like sentiment aggregation and sorting book chapter summaries. 2οΈβ£ Leaderboard: A live leaderboard encourages continuous improvement and competition among researchers.
π‘ What are some other landmark benchmarks in the history of long context evaluation? Feel free to share your thoughts and suggestions in the comments.