File size: 1,707 Bytes
f293f13 6e62b6b f293f13 6e62b6b f293f13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
tags:
- fill-mask
- text2text-generation
- fill-mask
- text-classification
- Summarization
- Chinese
- CPT
- BART
- BERT
- seq2seq
language: zh
---
# Chinese CPT-Base
## Model description
This is an implementation of CPT-Base. To use CPT, please import the file `modeling_cpt.py` (**Download** [Here](https://github.com/fastnlp/CPT/blob/master/finetune/modeling_cpt.py)) that define the architecture of CPT into your project.
[**CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation**](https://arxiv.org/pdf/2109.05729.pdf)
Yunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai, Fei Yang, Li Zhe, Hujun Bao, Xipeng Qiu
**Github Link:** https://github.com/fastnlp/CPT
## Usage
```python
>>> from modeling_cpt import CPTForConditionalGeneration
>>> from transformers import BertTokenizer
>>> tokenizer = BertTokenizer.from_pretrained("fnlp/cpt-base")
>>> model = CPTForConditionalGeneration.from_pretrained("fnlp/cpt-base")
>>> inputs = tokenizer.encode("北京是[MASK]的首都", return_tensors='pt')
>>> pred_ids = model.generate(input_ids, num_beams=4, max_length=20)
>>> print(tokenizer.convert_ids_to_tokens(pred_ids[i]))
['[SEP]', '[CLS]', '北', '京', '是', '中', '国', '的', '首', '都', '[SEP]']
```
**Note: Please use BertTokenizer for the model vocabulary. DO NOT use original BartTokenizer.**
## Citation
```bibtex
@article{shao2021cpt,
title={CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation},
author={Yunfan Shao and Zhichao Geng and Yitao Liu and Junqi Dai and Fei Yang and Li Zhe and Hujun Bao and Xipeng Qiu},
journal={arXiv preprint arXiv:2109.05729},
year={2021}
}
``` |