Chinese CPT-Base

Model description

This is an implementation of CPT-Base. To use CPT, please import the file modeling_cpt.py (Download Here) that define the architecture of CPT into your project.

CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

Yunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai, Fei Yang, Li Zhe, Hujun Bao, Xipeng Qiu

Github Link: https://github.com/fastnlp/CPT

Usage

>>> from modeling_cpt import CPTForConditionalGeneration
>>> from transformers import BertTokenizer
>>> tokenizer = BertTokenizer.from_pretrained("fnlp/cpt-base")
>>> model = CPTForConditionalGeneration.from_pretrained("fnlp/cpt-base")
>>> inputs = tokenizer.encode("北京是[MASK]的首都", return_tensors='pt')
>>> pred_ids = model.generate(input_ids, num_beams=4, max_length=20)
>>> print(tokenizer.convert_ids_to_tokens(pred_ids[i]))
    ['[SEP]', '[CLS]', '北', '京', '是', '中', '国', '的', '首', '都', '[SEP]']

Note: Please use BertTokenizer for the model vocabulary. DO NOT use original BartTokenizer.

Citation

@article{shao2021cpt,
  title={CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation}, 
  author={Yunfan Shao and Zhichao Geng and Yitao Liu and Junqi Dai and Fei Yang and Li Zhe and Hujun Bao and Xipeng Qiu},
  journal={arXiv preprint arXiv:2109.05729},
  year={2021}
}
Downloads last month
1,475
Hosted inference API
Text Classification
Examples
Examples
Mask token: <mask>
This model can be loaded on the Inference API on-demand.