Whisper large-v3 model for CTranslate2
This repository contains the conversion of Whisper large-v3
to the CTranslate2 model format.
This model can be used in CTranslate2 or projects based on CTranslate2 such as faster-whisper.
Example
from faster_whisper import WhisperModel
model = WhisperModel("flyingleafe/faster-whisper-large-v3")
segments, info = model.transcribe("audio.mp3")
for segment in segments:
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
Conversion details
The original model was converted the following way:
# use Transformers convertation to HF format
python transformers/src/transformers/models/whisper/convert_openai_to_hf.py \
--checkpoint_path large-v3 --pytorch_dump_folder_path ./whisper-large-v3 --convert_tokenizer True
# ... some manual convertation to get `tokenizer.json` via `WhisperTokenizerFast` class ...
ct2-transformers-converter --model ./whisper-large-v3 --output_dir faster-whisper-large-v2 \
--copy_files tokenizer.json preprocessor_config.json --quantization float16
Note that the model weights are saved in FP16. This type can be changed when the model is loaded using the compute_type
option in CTranslate2.
- Downloads last month
- 567
Inference API (serverless) does not yet support ctranslate2 models for this pipeline type.