DareBeagle-7B

DareBeagle-7B is a merge of the following models using LazyMergekit:

As an experiment to find the best base merge to further fine-tuning, expect a lot of experiments named using parts of the component models until a clear winner emerges in the benchmarks

In this case merging the DPO versions of 2 merge models with different characterisics to meassure what capabilities remain or improve

🧩 Configuration

slices:
  - sources:
      - model: mlabonne/NeuralBeagle14-7B
        layer_range: [0, 32]
      - model: mlabonne/NeuralDaredevil-7B
        layer_range: [0, 32]

merge_method: slerp
base_model: mlabonne/NeuralBeagle14-7B

parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5 # fallback for rest of tensors
tokenizer_source: union

dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "flemmingmiguel/DareBeagle-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
1,261
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train flemmingmiguel/DareBeagle-7B