Edit model card

image/png

flammen22C-mistral-7B

A Mistral 7B LLM built from merging pretrained models and finetuning on flammenai/casual-conversation-DPO. Flammen specializes in exceptional character roleplay, creative writing, and general intelligence

Method

Finetuned using an A100 on Google Colab.

Fine-tune a Mistral-7b model with Direct Preference Optimization - Maxime Labonne

Configuration

System prompt, dataset formatting:

def chatml_format(example):
    # Initialize formatted system message
    system = ""
    message = {"role": "system", "content": "You are an AI character talking to a human. Engage in casual conversation."}
    system = tokenizer.apply_chat_template([message], tokenize=False)

    # Format instruction
    message = {"role": "user", "content": example['prompt']}
    prompt = tokenizer.apply_chat_template([message], tokenize=False, add_generation_prompt=True)

    # Format chosen answer
    chosen = example['chosen'] + "<|im_end|>\n"

    # Format rejected answer
    rejected = example['rejected'] + "<|im_end|>\n"

    return {
        "prompt": system + prompt,
        "chosen": chosen,
        "rejected": rejected,
    }

dataset = load_dataset("flammenai/casual-conversation-DPO")['train']

# Save columns
original_columns = dataset.column_names

# Tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"

# Format dataset
dataset = dataset.map(
    chatml_format,
    remove_columns=original_columns
)

LoRA, model, and training settings:

# LoRA configuration
peft_config = LoraConfig(
    r=16,
    lora_alpha=16,
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
    target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
)

# Model to fine-tune
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    load_in_4bit=True
)
model.config.use_cache = False

# Reference model
ref_model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    load_in_4bit=True
)

# Training arguments
training_args = TrainingArguments(
    per_device_train_batch_size=4,
    gradient_accumulation_steps=4,
    gradient_checkpointing=True,
    learning_rate=5e-5,
    lr_scheduler_type="cosine",
    max_steps=2000,
    save_strategy="no",
    logging_steps=1,
    output_dir=new_model,
    optim="paged_adamw_32bit",
    warmup_steps=100,
    bf16=True,
    report_to="wandb",
)

# Create DPO trainer
dpo_trainer = DPOTrainer(
    model,
    ref_model,
    args=training_args,
    train_dataset=dataset,
    tokenizer=tokenizer,
    peft_config=peft_config,
    beta=0.1,
    max_prompt_length=2048,
    max_length=4096,
    force_use_ref_model=True
)

# Fine-tune model with DPO
dpo_trainer.train()
Downloads last month
10
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for flammenai/flammen22C-mistral-7B

Dataset used to train flammenai/flammen22C-mistral-7B