|
--- |
|
tags: |
|
- flair |
|
- token-classification |
|
- sequence-tagger-model |
|
language: |
|
- en |
|
- de |
|
- fr |
|
- it |
|
- nl |
|
- pl |
|
- es |
|
- sv |
|
- da |
|
- no |
|
- fi |
|
- cs |
|
datasets: |
|
- ontonotes |
|
widget: |
|
- text: "Ich liebe Berlin, as they say." |
|
--- |
|
|
|
## Multilingual Universal Part-of-Speech Tagging in Flair (fast model) |
|
|
|
This is the fast multilingual universal part-of-speech tagging model that ships with [Flair](https://github.com/flairNLP/flair/). |
|
|
|
F1-Score: **92,88** (12 UD Treebanks covering English, German, French, Italian, Dutch, Polish, Spanish, Swedish, Danish, Norwegian, Finnish and Czech) |
|
|
|
Predicts universal POS tags: |
|
|
|
| **tag** | **meaning** | |
|
|---------------------------------|-----------| |
|
|ADJ | adjective | |
|
| ADP | adposition | |
|
| ADV | adverb | |
|
| AUX | auxiliary | |
|
| CCONJ | coordinating conjunction | |
|
| DET | determiner | |
|
| INTJ | interjection | |
|
| NOUN | noun | |
|
| NUM | numeral | |
|
| PART | particle | |
|
| PRON | pronoun | |
|
| PROPN | proper noun | |
|
| PUNCT | punctuation | |
|
| SCONJ | subordinating conjunction | |
|
| SYM | symbol | |
|
| VERB | verb | |
|
| X | other | |
|
|
|
|
|
|
|
Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF. |
|
|
|
--- |
|
|
|
### Demo: How to use in Flair |
|
|
|
Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) |
|
|
|
```python |
|
from flair.data import Sentence |
|
from flair.models import SequenceTagger |
|
|
|
# load tagger |
|
tagger = SequenceTagger.load("flair/upos-multi-fast") |
|
|
|
# make example sentence |
|
sentence = Sentence("Ich liebe Berlin, as they say. ") |
|
|
|
# predict NER tags |
|
tagger.predict(sentence) |
|
|
|
# print sentence |
|
print(sentence) |
|
|
|
# print predicted NER spans |
|
print('The following NER tags are found:') |
|
# iterate over entities and print |
|
for entity in sentence.get_spans('pos'): |
|
print(entity) |
|
``` |
|
|
|
This yields the following output: |
|
``` |
|
Span [1]: "Ich" [β Labels: PRON (0.9999)] |
|
Span [2]: "liebe" [β Labels: VERB (0.9999)] |
|
Span [3]: "Berlin" [β Labels: PROPN (0.9997)] |
|
Span [4]: "," [β Labels: PUNCT (1.0)] |
|
Span [5]: "as" [β Labels: SCONJ (0.9991)] |
|
Span [6]: "they" [β Labels: PRON (0.9998)] |
|
Span [7]: "say" [β Labels: VERB (0.9998)] |
|
Span [8]: "." [β Labels: PUNCT (1.0)] |
|
``` |
|
|
|
So, the words "*Ich*" and "*they*" are labeled as **pronouns** (PRON), while "*liebe*" and "*say*" are labeled as **verbs** (VERB) in the multilingual sentence "*Ich liebe Berlin, as they say*". |
|
|
|
|
|
--- |
|
|
|
### Training: Script to train this model |
|
|
|
The following Flair script was used to train this model: |
|
|
|
```python |
|
from flair.data import MultiCorpus |
|
from flair.datasets import UD_ENGLISH, UD_GERMAN, UD_FRENCH, UD_ITALIAN, UD_POLISH, UD_DUTCH, UD_CZECH, \ |
|
UD_DANISH, UD_SPANISH, UD_SWEDISH, UD_NORWEGIAN, UD_FINNISH |
|
from flair.embeddings import StackedEmbeddings, FlairEmbeddings |
|
|
|
# 1. make a multi corpus consisting of 12 UD treebanks (in_memory=False here because this corpus becomes large) |
|
corpus = MultiCorpus([ |
|
UD_ENGLISH(in_memory=False), |
|
UD_GERMAN(in_memory=False), |
|
UD_DUTCH(in_memory=False), |
|
UD_FRENCH(in_memory=False), |
|
UD_ITALIAN(in_memory=False), |
|
UD_SPANISH(in_memory=False), |
|
UD_POLISH(in_memory=False), |
|
UD_CZECH(in_memory=False), |
|
UD_DANISH(in_memory=False), |
|
UD_SWEDISH(in_memory=False), |
|
UD_NORWEGIAN(in_memory=False), |
|
UD_FINNISH(in_memory=False), |
|
]) |
|
|
|
# 2. what tag do we want to predict? |
|
tag_type = 'upos' |
|
|
|
# 3. make the tag dictionary from the corpus |
|
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) |
|
|
|
# 4. initialize each embedding we use |
|
embedding_types = [ |
|
|
|
# contextual string embeddings, forward |
|
FlairEmbeddings('multi-forward-fast'), |
|
|
|
# contextual string embeddings, backward |
|
FlairEmbeddings('multi-backward-fast'), |
|
] |
|
|
|
# embedding stack consists of Flair and GloVe embeddings |
|
embeddings = StackedEmbeddings(embeddings=embedding_types) |
|
|
|
# 5. initialize sequence tagger |
|
from flair.models import SequenceTagger |
|
|
|
tagger = SequenceTagger(hidden_size=256, |
|
embeddings=embeddings, |
|
tag_dictionary=tag_dictionary, |
|
tag_type=tag_type, |
|
use_crf=False) |
|
|
|
# 6. initialize trainer |
|
from flair.trainers import ModelTrainer |
|
|
|
trainer = ModelTrainer(tagger, corpus) |
|
|
|
# 7. run training |
|
trainer.train('resources/taggers/upos-multi-fast', |
|
train_with_dev=True, |
|
max_epochs=150) |
|
``` |
|
|
|
|
|
|
|
--- |
|
|
|
### Cite |
|
|
|
Please cite the following paper when using this model. |
|
|
|
``` |
|
@inproceedings{akbik2018coling, |
|
title={Contextual String Embeddings for Sequence Labeling}, |
|
author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, |
|
booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, |
|
pages = {1638--1649}, |
|
year = {2018} |
|
} |
|
``` |
|
|
|
--- |
|
|
|
### Issues? |
|
|
|
The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/). |
|
|