File size: 58,664 Bytes
99581cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
2021-01-15 16:27:19,924 ----------------------------------------------------------------------------------------------------
2021-01-15 16:27:19,927 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): XLMRobertaModel(
      (embeddings): RobertaEmbeddings(
        (word_embeddings): Embedding(250002, 1024, padding_idx=1)
        (position_embeddings): Embedding(514, 1024, padding_idx=1)
        (token_type_embeddings): Embedding(1, 1024)
        (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): RobertaEncoder(
        (layer): ModuleList(
          (0): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (1): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (2): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (3): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (4): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (5): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (6): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (7): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (8): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (9): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (10): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (11): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (12): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (13): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (14): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (15): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (16): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (17): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (18): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (19): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (20): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (21): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (22): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (23): RobertaLayer(
            (attention): RobertaAttention(
              (self): RobertaSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): RobertaSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): RobertaIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
            )
            (output): RobertaOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): RobertaPooler(
        (dense): Linear(in_features=1024, out_features=1024, bias=True)
        (activation): Tanh()
      )
    )
  )
  (word_dropout): WordDropout(p=0.05)
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1024, out_features=20, bias=True)
  (beta): 1.0
  (weights): None
  (weight_tensor) None
)"
2021-01-15 16:27:19,928 ----------------------------------------------------------------------------------------------------
2021-01-15 16:27:19,928 Corpus: "Corpus: 12705 train + 3068 dev + 3160 test sentences"
2021-01-15 16:27:19,928 ----------------------------------------------------------------------------------------------------
2021-01-15 16:27:19,928 Parameters:
2021-01-15 16:27:19,928  - learning_rate: "5e-06"
2021-01-15 16:27:19,928  - mini_batch_size: "4"
2021-01-15 16:27:19,928  - patience: "3"
2021-01-15 16:27:19,928  - anneal_factor: "0.5"
2021-01-15 16:27:19,928  - max_epochs: "20"
2021-01-15 16:27:19,928  - shuffle: "True"
2021-01-15 16:27:19,928  - train_with_dev: "True"
2021-01-15 16:27:19,928  - batch_growth_annealing: "False"
2021-01-15 16:27:19,928 ----------------------------------------------------------------------------------------------------
2021-01-15 16:27:19,928 Model training base path: "resources/contextdrop/flert-de-ft+dev-xlm-roberta-large-context+drop-64-True-42"
2021-01-15 16:27:19,928 ----------------------------------------------------------------------------------------------------
2021-01-15 16:27:19,929 Device: cuda:2
2021-01-15 16:27:19,929 ----------------------------------------------------------------------------------------------------
2021-01-15 16:27:19,929 Embeddings storage mode: none
2021-01-15 16:27:19,939 ----------------------------------------------------------------------------------------------------
2021-01-15 16:29:48,177 epoch 1 - iter 394/3944 - loss 0.58149384 - samples/sec: 10.63 - lr: 0.000005
2021-01-15 16:32:16,470 epoch 1 - iter 788/3944 - loss 0.43146001 - samples/sec: 10.63 - lr: 0.000005
2021-01-15 16:34:43,836 epoch 1 - iter 1182/3944 - loss 0.38010955 - samples/sec: 10.70 - lr: 0.000005
2021-01-15 16:37:11,698 epoch 1 - iter 1576/3944 - loss 0.34431028 - samples/sec: 10.66 - lr: 0.000005
2021-01-15 16:39:39,747 epoch 1 - iter 1970/3944 - loss 0.32744939 - samples/sec: 10.65 - lr: 0.000005
2021-01-15 16:42:07,631 epoch 1 - iter 2364/3944 - loss 0.31857823 - samples/sec: 10.66 - lr: 0.000005
2021-01-15 16:44:34,485 epoch 1 - iter 2758/3944 - loss 0.30456838 - samples/sec: 10.73 - lr: 0.000005
2021-01-15 16:47:02,394 epoch 1 - iter 3152/3944 - loss 0.29905511 - samples/sec: 10.66 - lr: 0.000005
2021-01-15 16:49:29,868 epoch 1 - iter 3546/3944 - loss 0.29295683 - samples/sec: 10.69 - lr: 0.000005
2021-01-15 16:51:58,152 epoch 1 - iter 3940/3944 - loss 0.28678117 - samples/sec: 10.63 - lr: 0.000005
2021-01-15 16:51:59,459 ----------------------------------------------------------------------------------------------------
2021-01-15 16:51:59,459 EPOCH 1 done: loss 0.2866 - lr 0.0000050
2021-01-15 16:51:59,459 BAD EPOCHS (no improvement): 4
2021-01-15 16:51:59,462 ----------------------------------------------------------------------------------------------------
2021-01-15 16:54:27,337 epoch 2 - iter 394/3944 - loss 0.23763366 - samples/sec: 10.66 - lr: 0.000005
2021-01-15 16:56:55,082 epoch 2 - iter 788/3944 - loss 0.20691177 - samples/sec: 10.67 - lr: 0.000005
2021-01-15 16:59:22,869 epoch 2 - iter 1182/3944 - loss 0.21072023 - samples/sec: 10.66 - lr: 0.000005
2021-01-15 17:01:50,770 epoch 2 - iter 1576/3944 - loss 0.20705774 - samples/sec: 10.66 - lr: 0.000005
2021-01-15 17:04:18,029 epoch 2 - iter 1970/3944 - loss 0.20345128 - samples/sec: 10.70 - lr: 0.000005
2021-01-15 17:06:45,050 epoch 2 - iter 2364/3944 - loss 0.19762390 - samples/sec: 10.72 - lr: 0.000005
2021-01-15 17:09:11,995 epoch 2 - iter 2758/3944 - loss 0.20206661 - samples/sec: 10.73 - lr: 0.000005
2021-01-15 17:11:39,892 epoch 2 - iter 3152/3944 - loss 0.19768991 - samples/sec: 10.66 - lr: 0.000005
2021-01-15 17:14:07,315 epoch 2 - iter 3546/3944 - loss 0.20115805 - samples/sec: 10.69 - lr: 0.000005
2021-01-15 17:16:34,784 epoch 2 - iter 3940/3944 - loss 0.19983876 - samples/sec: 10.69 - lr: 0.000005
2021-01-15 17:16:36,073 ----------------------------------------------------------------------------------------------------
2021-01-15 17:16:36,074 EPOCH 2 done: loss 0.1996 - lr 0.0000049
2021-01-15 17:16:36,074 BAD EPOCHS (no improvement): 4
2021-01-15 17:16:36,077 ----------------------------------------------------------------------------------------------------
2021-01-15 17:19:03,268 epoch 3 - iter 394/3944 - loss 0.16475767 - samples/sec: 10.71 - lr: 0.000005
2021-01-15 17:21:30,430 epoch 3 - iter 788/3944 - loss 0.16467943 - samples/sec: 10.71 - lr: 0.000005
2021-01-15 17:23:57,785 epoch 3 - iter 1182/3944 - loss 0.16820842 - samples/sec: 10.70 - lr: 0.000005
2021-01-15 17:26:25,077 epoch 3 - iter 1576/3944 - loss 0.17111347 - samples/sec: 10.70 - lr: 0.000005
2021-01-15 17:28:51,818 epoch 3 - iter 1970/3944 - loss 0.17649180 - samples/sec: 10.74 - lr: 0.000005
2021-01-15 17:31:18,679 epoch 3 - iter 2364/3944 - loss 0.18734800 - samples/sec: 10.73 - lr: 0.000005
2021-01-15 17:33:45,680 epoch 3 - iter 2758/3944 - loss 0.18971106 - samples/sec: 10.72 - lr: 0.000005
2021-01-15 17:36:13,246 epoch 3 - iter 3152/3944 - loss 0.18746164 - samples/sec: 10.68 - lr: 0.000005
2021-01-15 17:38:40,672 epoch 3 - iter 3546/3944 - loss 0.19218287 - samples/sec: 10.69 - lr: 0.000005
2021-01-15 17:41:07,957 epoch 3 - iter 3940/3944 - loss 0.19381799 - samples/sec: 10.70 - lr: 0.000005
2021-01-15 17:41:09,257 ----------------------------------------------------------------------------------------------------
2021-01-15 17:41:09,257 EPOCH 3 done: loss 0.1938 - lr 0.0000047
2021-01-15 17:41:09,257 BAD EPOCHS (no improvement): 4
2021-01-15 17:41:09,260 ----------------------------------------------------------------------------------------------------
2021-01-15 17:43:36,593 epoch 4 - iter 394/3944 - loss 0.16488209 - samples/sec: 10.70 - lr: 0.000005
2021-01-15 17:46:04,133 epoch 4 - iter 788/3944 - loss 0.17473605 - samples/sec: 10.68 - lr: 0.000005
2021-01-15 17:48:31,440 epoch 4 - iter 1182/3944 - loss 0.16738039 - samples/sec: 10.70 - lr: 0.000005
2021-01-15 17:50:58,858 epoch 4 - iter 1576/3944 - loss 0.16596805 - samples/sec: 10.69 - lr: 0.000005
2021-01-15 17:53:26,260 epoch 4 - iter 1970/3944 - loss 0.16483490 - samples/sec: 10.69 - lr: 0.000005
2021-01-15 17:55:53,072 epoch 4 - iter 2364/3944 - loss 0.16752558 - samples/sec: 10.74 - lr: 0.000005
2021-01-15 17:58:19,944 epoch 4 - iter 2758/3944 - loss 0.16537132 - samples/sec: 10.73 - lr: 0.000005
2021-01-15 18:00:47,459 epoch 4 - iter 3152/3944 - loss 0.16501133 - samples/sec: 10.68 - lr: 0.000005
2021-01-15 18:03:15,474 epoch 4 - iter 3546/3944 - loss 0.16726116 - samples/sec: 10.65 - lr: 0.000005
2021-01-15 18:05:43,265 epoch 4 - iter 3940/3944 - loss 0.16914137 - samples/sec: 10.66 - lr: 0.000005
2021-01-15 18:05:44,543 ----------------------------------------------------------------------------------------------------
2021-01-15 18:05:44,543 EPOCH 4 done: loss 0.1690 - lr 0.0000045
2021-01-15 18:05:44,543 BAD EPOCHS (no improvement): 4
2021-01-15 18:05:44,547 ----------------------------------------------------------------------------------------------------
2021-01-15 18:08:12,011 epoch 5 - iter 394/3944 - loss 0.15833616 - samples/sec: 10.69 - lr: 0.000004
2021-01-15 18:10:38,832 epoch 5 - iter 788/3944 - loss 0.16551527 - samples/sec: 10.74 - lr: 0.000004
2021-01-15 18:13:06,451 epoch 5 - iter 1182/3944 - loss 0.17177677 - samples/sec: 10.68 - lr: 0.000004
2021-01-15 18:15:34,493 epoch 5 - iter 1576/3944 - loss 0.17301128 - samples/sec: 10.65 - lr: 0.000004
2021-01-15 18:18:03,239 epoch 5 - iter 1970/3944 - loss 0.17650116 - samples/sec: 10.60 - lr: 0.000004
2021-01-15 18:20:32,247 epoch 5 - iter 2364/3944 - loss 0.17631064 - samples/sec: 10.58 - lr: 0.000004
2021-01-15 18:22:59,227 epoch 5 - iter 2758/3944 - loss 0.17537379 - samples/sec: 10.72 - lr: 0.000004
2021-01-15 18:25:24,556 epoch 5 - iter 3152/3944 - loss 0.17617518 - samples/sec: 10.85 - lr: 0.000004
2021-01-15 18:27:50,096 epoch 5 - iter 3546/3944 - loss 0.17367857 - samples/sec: 10.83 - lr: 0.000004
2021-01-15 18:30:16,704 epoch 5 - iter 3940/3944 - loss 0.17093901 - samples/sec: 10.75 - lr: 0.000004
2021-01-15 18:30:18,004 ----------------------------------------------------------------------------------------------------
2021-01-15 18:30:18,004 EPOCH 5 done: loss 0.1708 - lr 0.0000043
2021-01-15 18:30:18,004 BAD EPOCHS (no improvement): 4
2021-01-15 18:30:18,007 ----------------------------------------------------------------------------------------------------
2021-01-15 18:32:42,968 epoch 6 - iter 394/3944 - loss 0.17698825 - samples/sec: 10.87 - lr: 0.000004
2021-01-15 18:35:08,371 epoch 6 - iter 788/3944 - loss 0.16713416 - samples/sec: 10.84 - lr: 0.000004
2021-01-15 18:37:34,014 epoch 6 - iter 1182/3944 - loss 0.16902562 - samples/sec: 10.82 - lr: 0.000004
2021-01-15 18:40:00,144 epoch 6 - iter 1576/3944 - loss 0.16574844 - samples/sec: 10.79 - lr: 0.000004
2021-01-15 18:42:26,534 epoch 6 - iter 1970/3944 - loss 0.16657012 - samples/sec: 10.77 - lr: 0.000004
2021-01-15 18:44:52,613 epoch 6 - iter 2364/3944 - loss 0.16641916 - samples/sec: 10.79 - lr: 0.000004
2021-01-15 18:47:17,983 epoch 6 - iter 2758/3944 - loss 0.16274268 - samples/sec: 10.84 - lr: 0.000004
2021-01-15 18:49:43,878 epoch 6 - iter 3152/3944 - loss 0.16172776 - samples/sec: 10.80 - lr: 0.000004
2021-01-15 18:52:09,331 epoch 6 - iter 3546/3944 - loss 0.16291188 - samples/sec: 10.84 - lr: 0.000004
2021-01-15 18:54:34,272 epoch 6 - iter 3940/3944 - loss 0.16208591 - samples/sec: 10.87 - lr: 0.000004
2021-01-15 18:54:35,553 ----------------------------------------------------------------------------------------------------
2021-01-15 18:54:35,553 EPOCH 6 done: loss 0.1621 - lr 0.0000040
2021-01-15 18:54:35,553 BAD EPOCHS (no improvement): 4
2021-01-15 18:54:35,556 ----------------------------------------------------------------------------------------------------
2021-01-15 18:57:00,031 epoch 7 - iter 394/3944 - loss 0.15674837 - samples/sec: 10.91 - lr: 0.000004
2021-01-15 18:59:25,217 epoch 7 - iter 788/3944 - loss 0.16222971 - samples/sec: 10.86 - lr: 0.000004
2021-01-15 19:01:50,483 epoch 7 - iter 1182/3944 - loss 0.17608659 - samples/sec: 10.85 - lr: 0.000004
2021-01-15 19:04:15,644 epoch 7 - iter 1576/3944 - loss 0.17042676 - samples/sec: 10.86 - lr: 0.000004
2021-01-15 19:06:40,626 epoch 7 - iter 1970/3944 - loss 0.16835536 - samples/sec: 10.87 - lr: 0.000004
2021-01-15 19:09:06,269 epoch 7 - iter 2364/3944 - loss 0.17005717 - samples/sec: 10.82 - lr: 0.000004
2021-01-15 19:11:30,455 epoch 7 - iter 2758/3944 - loss 0.16986731 - samples/sec: 10.93 - lr: 0.000004
2021-01-15 19:13:55,363 epoch 7 - iter 3152/3944 - loss 0.16607768 - samples/sec: 10.88 - lr: 0.000004
2021-01-15 19:16:20,669 epoch 7 - iter 3546/3944 - loss 0.16408475 - samples/sec: 10.85 - lr: 0.000004
2021-01-15 19:18:46,350 epoch 7 - iter 3940/3944 - loss 0.16187247 - samples/sec: 10.82 - lr: 0.000004
2021-01-15 19:18:47,632 ----------------------------------------------------------------------------------------------------
2021-01-15 19:18:47,632 EPOCH 7 done: loss 0.1619 - lr 0.0000036
2021-01-15 19:18:47,632 BAD EPOCHS (no improvement): 4
2021-01-15 19:18:47,635 ----------------------------------------------------------------------------------------------------
2021-01-15 19:21:13,232 epoch 8 - iter 394/3944 - loss 0.15860862 - samples/sec: 10.83 - lr: 0.000004
2021-01-15 19:23:37,769 epoch 8 - iter 788/3944 - loss 0.16488914 - samples/sec: 10.90 - lr: 0.000004
2021-01-15 19:26:03,243 epoch 8 - iter 1182/3944 - loss 0.16503533 - samples/sec: 10.83 - lr: 0.000004
2021-01-15 19:28:28,171 epoch 8 - iter 1576/3944 - loss 0.16139434 - samples/sec: 10.88 - lr: 0.000003
2021-01-15 19:30:53,669 epoch 8 - iter 1970/3944 - loss 0.15723985 - samples/sec: 10.83 - lr: 0.000003
2021-01-15 19:33:18,230 epoch 8 - iter 2364/3944 - loss 0.15695920 - samples/sec: 10.90 - lr: 0.000003
2021-01-15 19:35:43,271 epoch 8 - iter 2758/3944 - loss 0.15942351 - samples/sec: 10.87 - lr: 0.000003
2021-01-15 19:38:07,861 epoch 8 - iter 3152/3944 - loss 0.16047035 - samples/sec: 10.90 - lr: 0.000003
2021-01-15 19:40:31,578 epoch 8 - iter 3546/3944 - loss 0.15915561 - samples/sec: 10.97 - lr: 0.000003
2021-01-15 19:42:56,291 epoch 8 - iter 3940/3944 - loss 0.15889894 - samples/sec: 10.89 - lr: 0.000003
2021-01-15 19:42:57,531 ----------------------------------------------------------------------------------------------------
2021-01-15 19:42:57,531 EPOCH 8 done: loss 0.1591 - lr 0.0000033
2021-01-15 19:42:57,531 BAD EPOCHS (no improvement): 4
2021-01-15 19:42:57,534 ----------------------------------------------------------------------------------------------------
2021-01-15 19:45:22,077 epoch 9 - iter 394/3944 - loss 0.15628960 - samples/sec: 10.90 - lr: 0.000003
2021-01-15 19:47:46,787 epoch 9 - iter 788/3944 - loss 0.15383703 - samples/sec: 10.89 - lr: 0.000003
2021-01-15 19:50:11,703 epoch 9 - iter 1182/3944 - loss 0.14587839 - samples/sec: 10.88 - lr: 0.000003
2021-01-15 19:52:36,604 epoch 9 - iter 1576/3944 - loss 0.14536078 - samples/sec: 10.88 - lr: 0.000003
2021-01-15 19:55:01,857 epoch 9 - iter 1970/3944 - loss 0.14842223 - samples/sec: 10.85 - lr: 0.000003
2021-01-15 19:57:26,976 epoch 9 - iter 2364/3944 - loss 0.14781136 - samples/sec: 10.86 - lr: 0.000003
2021-01-15 19:59:52,570 epoch 9 - iter 2758/3944 - loss 0.14980740 - samples/sec: 10.83 - lr: 0.000003
2021-01-15 20:02:16,766 epoch 9 - iter 3152/3944 - loss 0.15147019 - samples/sec: 10.93 - lr: 0.000003
2021-01-15 20:04:41,587 epoch 9 - iter 3546/3944 - loss 0.14992780 - samples/sec: 10.88 - lr: 0.000003
2021-01-15 20:07:07,065 epoch 9 - iter 3940/3944 - loss 0.14688711 - samples/sec: 10.83 - lr: 0.000003
2021-01-15 20:07:08,315 ----------------------------------------------------------------------------------------------------
2021-01-15 20:07:08,315 EPOCH 9 done: loss 0.1469 - lr 0.0000029
2021-01-15 20:07:08,315 BAD EPOCHS (no improvement): 4
2021-01-15 20:07:08,318 ----------------------------------------------------------------------------------------------------
2021-01-15 20:09:33,307 epoch 10 - iter 394/3944 - loss 0.15646665 - samples/sec: 10.87 - lr: 0.000003
2021-01-15 20:11:57,958 epoch 10 - iter 788/3944 - loss 0.15117971 - samples/sec: 10.90 - lr: 0.000003
2021-01-15 20:14:23,257 epoch 10 - iter 1182/3944 - loss 0.15319049 - samples/sec: 10.85 - lr: 0.000003
2021-01-15 20:16:47,405 epoch 10 - iter 1576/3944 - loss 0.14632406 - samples/sec: 10.93 - lr: 0.000003
2021-01-15 20:19:13,077 epoch 10 - iter 1970/3944 - loss 0.14880268 - samples/sec: 10.82 - lr: 0.000003
2021-01-15 20:21:37,974 epoch 10 - iter 2364/3944 - loss 0.14738769 - samples/sec: 10.88 - lr: 0.000003
2021-01-15 20:24:02,312 epoch 10 - iter 2758/3944 - loss 0.14992138 - samples/sec: 10.92 - lr: 0.000003
2021-01-15 20:26:26,416 epoch 10 - iter 3152/3944 - loss 0.14923992 - samples/sec: 10.94 - lr: 0.000003
2021-01-15 20:28:50,624 epoch 10 - iter 3546/3944 - loss 0.14988541 - samples/sec: 10.93 - lr: 0.000003
2021-01-15 20:31:15,232 epoch 10 - iter 3940/3944 - loss 0.14923823 - samples/sec: 10.90 - lr: 0.000003
2021-01-15 20:31:16,444 ----------------------------------------------------------------------------------------------------
2021-01-15 20:31:16,445 EPOCH 10 done: loss 0.1492 - lr 0.0000025
2021-01-15 20:31:16,445 BAD EPOCHS (no improvement): 4
2021-01-15 20:31:16,447 ----------------------------------------------------------------------------------------------------
2021-01-15 20:33:41,402 epoch 11 - iter 394/3944 - loss 0.16146740 - samples/sec: 10.87 - lr: 0.000002
2021-01-15 20:36:05,837 epoch 11 - iter 788/3944 - loss 0.16349808 - samples/sec: 10.91 - lr: 0.000002
2021-01-15 20:38:30,901 epoch 11 - iter 1182/3944 - loss 0.15115769 - samples/sec: 10.87 - lr: 0.000002
2021-01-15 20:40:55,438 epoch 11 - iter 1576/3944 - loss 0.14705117 - samples/sec: 10.90 - lr: 0.000002
2021-01-15 20:43:20,378 epoch 11 - iter 1970/3944 - loss 0.14991591 - samples/sec: 10.87 - lr: 0.000002
2021-01-15 20:45:45,151 epoch 11 - iter 2364/3944 - loss 0.15439655 - samples/sec: 10.89 - lr: 0.000002
2021-01-15 20:48:09,941 epoch 11 - iter 2758/3944 - loss 0.15580945 - samples/sec: 10.89 - lr: 0.000002
2021-01-15 20:50:34,492 epoch 11 - iter 3152/3944 - loss 0.15253824 - samples/sec: 10.90 - lr: 0.000002
2021-01-15 20:52:58,700 epoch 11 - iter 3546/3944 - loss 0.15092320 - samples/sec: 10.93 - lr: 0.000002
2021-01-15 20:55:23,174 epoch 11 - iter 3940/3944 - loss 0.15157769 - samples/sec: 10.91 - lr: 0.000002
2021-01-15 20:55:24,418 ----------------------------------------------------------------------------------------------------
2021-01-15 20:55:24,418 EPOCH 11 done: loss 0.1515 - lr 0.0000021
2021-01-15 20:55:24,418 BAD EPOCHS (no improvement): 4
2021-01-15 20:55:24,421 ----------------------------------------------------------------------------------------------------
2021-01-15 20:57:49,024 epoch 12 - iter 394/3944 - loss 0.13353775 - samples/sec: 10.90 - lr: 0.000002
2021-01-15 21:00:13,363 epoch 12 - iter 788/3944 - loss 0.12481125 - samples/sec: 10.92 - lr: 0.000002
2021-01-15 21:02:37,921 epoch 12 - iter 1182/3944 - loss 0.13012621 - samples/sec: 10.90 - lr: 0.000002
2021-01-15 21:05:02,587 epoch 12 - iter 1576/3944 - loss 0.13179293 - samples/sec: 10.90 - lr: 0.000002
2021-01-15 21:07:27,496 epoch 12 - iter 1970/3944 - loss 0.13504151 - samples/sec: 10.88 - lr: 0.000002
2021-01-15 21:09:52,384 epoch 12 - iter 2364/3944 - loss 0.13639646 - samples/sec: 10.88 - lr: 0.000002
2021-01-15 21:12:16,819 epoch 12 - iter 2758/3944 - loss 0.13538659 - samples/sec: 10.91 - lr: 0.000002
2021-01-15 21:14:41,429 epoch 12 - iter 3152/3944 - loss 0.13401163 - samples/sec: 10.90 - lr: 0.000002
2021-01-15 21:17:06,129 epoch 12 - iter 3546/3944 - loss 0.13558124 - samples/sec: 10.89 - lr: 0.000002
2021-01-15 21:19:30,783 epoch 12 - iter 3940/3944 - loss 0.13632296 - samples/sec: 10.90 - lr: 0.000002
2021-01-15 21:19:32,074 ----------------------------------------------------------------------------------------------------
2021-01-15 21:19:32,075 EPOCH 12 done: loss 0.1365 - lr 0.0000017
2021-01-15 21:19:32,075 BAD EPOCHS (no improvement): 4
2021-01-15 21:19:32,086 ----------------------------------------------------------------------------------------------------
2021-01-15 21:21:56,456 epoch 13 - iter 394/3944 - loss 0.13665988 - samples/sec: 10.92 - lr: 0.000002
2021-01-15 21:24:21,213 epoch 13 - iter 788/3944 - loss 0.13434678 - samples/sec: 10.89 - lr: 0.000002
2021-01-15 21:26:45,716 epoch 13 - iter 1182/3944 - loss 0.14362465 - samples/sec: 10.91 - lr: 0.000002
2021-01-15 21:29:10,027 epoch 13 - iter 1576/3944 - loss 0.14463862 - samples/sec: 10.92 - lr: 0.000002
2021-01-15 21:31:35,804 epoch 13 - iter 1970/3944 - loss 0.14445941 - samples/sec: 10.81 - lr: 0.000002
2021-01-15 21:34:02,830 epoch 13 - iter 2364/3944 - loss 0.14383136 - samples/sec: 10.72 - lr: 0.000002
2021-01-15 21:36:29,998 epoch 13 - iter 2758/3944 - loss 0.14458719 - samples/sec: 10.71 - lr: 0.000001
2021-01-15 21:38:58,765 epoch 13 - iter 3152/3944 - loss 0.14583862 - samples/sec: 10.59 - lr: 0.000001
2021-01-15 21:41:27,066 epoch 13 - iter 3546/3944 - loss 0.14570568 - samples/sec: 10.63 - lr: 0.000001
2021-01-15 21:43:53,640 epoch 13 - iter 3940/3944 - loss 0.14616666 - samples/sec: 10.75 - lr: 0.000001
2021-01-15 21:43:54,933 ----------------------------------------------------------------------------------------------------
2021-01-15 21:43:54,933 EPOCH 13 done: loss 0.1461 - lr 0.0000014
2021-01-15 21:43:54,933 BAD EPOCHS (no improvement): 4
2021-01-15 21:43:54,953 ----------------------------------------------------------------------------------------------------
2021-01-15 21:46:22,842 epoch 14 - iter 394/3944 - loss 0.12543846 - samples/sec: 10.66 - lr: 0.000001
2021-01-15 21:48:49,756 epoch 14 - iter 788/3944 - loss 0.12854973 - samples/sec: 10.73 - lr: 0.000001
2021-01-15 21:51:16,782 epoch 14 - iter 1182/3944 - loss 0.12800828 - samples/sec: 10.72 - lr: 0.000001
2021-01-15 21:53:43,875 epoch 14 - iter 1576/3944 - loss 0.13018865 - samples/sec: 10.72 - lr: 0.000001
2021-01-15 21:56:11,947 epoch 14 - iter 1970/3944 - loss 0.13230140 - samples/sec: 10.64 - lr: 0.000001
2021-01-15 21:58:40,070 epoch 14 - iter 2364/3944 - loss 0.13276864 - samples/sec: 10.64 - lr: 0.000001
2021-01-15 22:01:07,197 epoch 14 - iter 2758/3944 - loss 0.13188423 - samples/sec: 10.71 - lr: 0.000001
2021-01-15 22:03:33,892 epoch 14 - iter 3152/3944 - loss 0.13622326 - samples/sec: 10.74 - lr: 0.000001
2021-01-15 22:06:01,226 epoch 14 - iter 3546/3944 - loss 0.13623591 - samples/sec: 10.70 - lr: 0.000001
2021-01-15 22:08:29,247 epoch 14 - iter 3940/3944 - loss 0.13681664 - samples/sec: 10.65 - lr: 0.000001
2021-01-15 22:08:30,571 ----------------------------------------------------------------------------------------------------
2021-01-15 22:08:30,571 EPOCH 14 done: loss 0.1367 - lr 0.0000010
2021-01-15 22:08:30,571 BAD EPOCHS (no improvement): 4
2021-01-15 22:08:30,619 ----------------------------------------------------------------------------------------------------
2021-01-15 22:10:58,784 epoch 15 - iter 394/3944 - loss 0.14687040 - samples/sec: 10.64 - lr: 0.000001
2021-01-15 22:13:25,824 epoch 15 - iter 788/3944 - loss 0.13773561 - samples/sec: 10.72 - lr: 0.000001
2021-01-15 22:15:52,774 epoch 15 - iter 1182/3944 - loss 0.13724811 - samples/sec: 10.73 - lr: 0.000001
2021-01-15 22:18:19,309 epoch 15 - iter 1576/3944 - loss 0.14105250 - samples/sec: 10.76 - lr: 0.000001
2021-01-15 22:20:46,418 epoch 15 - iter 1970/3944 - loss 0.13929364 - samples/sec: 10.71 - lr: 0.000001
2021-01-15 22:23:12,930 epoch 15 - iter 2364/3944 - loss 0.13891907 - samples/sec: 10.76 - lr: 0.000001
2021-01-15 22:25:40,051 epoch 15 - iter 2758/3944 - loss 0.13941754 - samples/sec: 10.71 - lr: 0.000001
2021-01-15 22:28:06,583 epoch 15 - iter 3152/3944 - loss 0.14071295 - samples/sec: 10.76 - lr: 0.000001
2021-01-15 22:30:32,954 epoch 15 - iter 3546/3944 - loss 0.13981342 - samples/sec: 10.77 - lr: 0.000001
2021-01-15 22:33:00,397 epoch 15 - iter 3940/3944 - loss 0.13880390 - samples/sec: 10.69 - lr: 0.000001
2021-01-15 22:33:01,714 ----------------------------------------------------------------------------------------------------
2021-01-15 22:33:01,715 EPOCH 15 done: loss 0.1387 - lr 0.0000007
2021-01-15 22:33:01,715 BAD EPOCHS (no improvement): 4
2021-01-15 22:33:01,718 ----------------------------------------------------------------------------------------------------
2021-01-15 22:35:29,035 epoch 16 - iter 394/3944 - loss 0.14291727 - samples/sec: 10.70 - lr: 0.000001
2021-01-15 22:37:56,417 epoch 16 - iter 788/3944 - loss 0.13149588 - samples/sec: 10.69 - lr: 0.000001
2021-01-15 22:40:23,990 epoch 16 - iter 1182/3944 - loss 0.13203036 - samples/sec: 10.68 - lr: 0.000001
2021-01-15 22:42:51,538 epoch 16 - iter 1576/3944 - loss 0.13134927 - samples/sec: 10.68 - lr: 0.000001
2021-01-15 22:45:19,113 epoch 16 - iter 1970/3944 - loss 0.13179903 - samples/sec: 10.68 - lr: 0.000001
2021-01-15 22:47:46,156 epoch 16 - iter 2364/3944 - loss 0.13354076 - samples/sec: 10.72 - lr: 0.000001
2021-01-15 22:50:13,300 epoch 16 - iter 2758/3944 - loss 0.13476940 - samples/sec: 10.71 - lr: 0.000001
2021-01-15 22:52:38,377 epoch 16 - iter 3152/3944 - loss 0.13497255 - samples/sec: 10.86 - lr: 0.000001
2021-01-15 22:55:03,400 epoch 16 - iter 3546/3944 - loss 0.13634147 - samples/sec: 10.87 - lr: 0.000001
2021-01-15 22:57:27,892 epoch 16 - iter 3940/3944 - loss 0.13727031 - samples/sec: 10.91 - lr: 0.000000
2021-01-15 22:57:29,178 ----------------------------------------------------------------------------------------------------
2021-01-15 22:57:29,178 EPOCH 16 done: loss 0.1376 - lr 0.0000005
2021-01-15 22:57:29,178 BAD EPOCHS (no improvement): 4
2021-01-15 22:57:29,181 ----------------------------------------------------------------------------------------------------
2021-01-15 22:59:53,548 epoch 17 - iter 394/3944 - loss 0.14524632 - samples/sec: 10.92 - lr: 0.000000
2021-01-15 23:02:18,357 epoch 17 - iter 788/3944 - loss 0.14652155 - samples/sec: 10.88 - lr: 0.000000
2021-01-15 23:04:43,610 epoch 17 - iter 1182/3944 - loss 0.13884438 - samples/sec: 10.85 - lr: 0.000000
2021-01-15 23:07:08,806 epoch 17 - iter 1576/3944 - loss 0.13549453 - samples/sec: 10.86 - lr: 0.000000
2021-01-15 23:09:34,317 epoch 17 - iter 1970/3944 - loss 0.13560330 - samples/sec: 10.83 - lr: 0.000000
2021-01-15 23:11:59,595 epoch 17 - iter 2364/3944 - loss 0.13972037 - samples/sec: 10.85 - lr: 0.000000
2021-01-15 23:14:24,656 epoch 17 - iter 2758/3944 - loss 0.14040167 - samples/sec: 10.87 - lr: 0.000000
2021-01-15 23:16:49,375 epoch 17 - iter 3152/3944 - loss 0.13946642 - samples/sec: 10.89 - lr: 0.000000
2021-01-15 23:19:15,069 epoch 17 - iter 3546/3944 - loss 0.13849877 - samples/sec: 10.82 - lr: 0.000000
2021-01-15 23:21:40,239 epoch 17 - iter 3940/3944 - loss 0.13743522 - samples/sec: 10.86 - lr: 0.000000
2021-01-15 23:21:41,530 ----------------------------------------------------------------------------------------------------
2021-01-15 23:21:41,530 EPOCH 17 done: loss 0.1373 - lr 0.0000003
2021-01-15 23:21:41,530 BAD EPOCHS (no improvement): 4
2021-01-15 23:21:41,533 ----------------------------------------------------------------------------------------------------
2021-01-15 23:24:07,941 epoch 18 - iter 394/3944 - loss 0.13214318 - samples/sec: 10.77 - lr: 0.000000
2021-01-15 23:26:34,009 epoch 18 - iter 788/3944 - loss 0.14259440 - samples/sec: 10.79 - lr: 0.000000
2021-01-15 23:29:00,116 epoch 18 - iter 1182/3944 - loss 0.13753739 - samples/sec: 10.79 - lr: 0.000000
2021-01-15 23:31:25,087 epoch 18 - iter 1576/3944 - loss 0.13957844 - samples/sec: 10.87 - lr: 0.000000
2021-01-15 23:33:50,076 epoch 18 - iter 1970/3944 - loss 0.13743370 - samples/sec: 10.87 - lr: 0.000000
2021-01-15 23:36:14,776 epoch 18 - iter 2364/3944 - loss 0.13970779 - samples/sec: 10.89 - lr: 0.000000
2021-01-15 23:38:38,473 epoch 18 - iter 2758/3944 - loss 0.13932537 - samples/sec: 10.97 - lr: 0.000000
2021-01-15 23:41:03,249 epoch 18 - iter 3152/3944 - loss 0.13745278 - samples/sec: 10.89 - lr: 0.000000
2021-01-15 23:43:28,499 epoch 18 - iter 3546/3944 - loss 0.13924606 - samples/sec: 10.85 - lr: 0.000000
2021-01-15 23:45:53,779 epoch 18 - iter 3940/3944 - loss 0.13920658 - samples/sec: 10.85 - lr: 0.000000
2021-01-15 23:45:55,039 ----------------------------------------------------------------------------------------------------
2021-01-15 23:45:55,040 EPOCH 18 done: loss 0.1400 - lr 0.0000001
2021-01-15 23:45:55,040 BAD EPOCHS (no improvement): 4
2021-01-15 23:45:55,060 ----------------------------------------------------------------------------------------------------
2021-01-15 23:48:19,848 epoch 19 - iter 394/3944 - loss 0.12011491 - samples/sec: 10.89 - lr: 0.000000
2021-01-15 23:50:45,410 epoch 19 - iter 788/3944 - loss 0.12712191 - samples/sec: 10.83 - lr: 0.000000
2021-01-15 23:53:10,309 epoch 19 - iter 1182/3944 - loss 0.12601271 - samples/sec: 10.88 - lr: 0.000000
2021-01-15 23:55:35,025 epoch 19 - iter 1576/3944 - loss 0.12838937 - samples/sec: 10.89 - lr: 0.000000
2021-01-15 23:57:59,862 epoch 19 - iter 1970/3944 - loss 0.13018004 - samples/sec: 10.88 - lr: 0.000000
2021-01-16 00:00:24,890 epoch 19 - iter 2364/3944 - loss 0.12867846 - samples/sec: 10.87 - lr: 0.000000
2021-01-16 00:02:49,627 epoch 19 - iter 2758/3944 - loss 0.12932283 - samples/sec: 10.89 - lr: 0.000000
2021-01-16 00:05:14,400 epoch 19 - iter 3152/3944 - loss 0.12859496 - samples/sec: 10.89 - lr: 0.000000
2021-01-16 00:07:39,476 epoch 19 - iter 3546/3944 - loss 0.12980219 - samples/sec: 10.86 - lr: 0.000000
2021-01-16 00:10:04,796 epoch 19 - iter 3940/3944 - loss 0.13157911 - samples/sec: 10.85 - lr: 0.000000
2021-01-16 00:10:06,033 ----------------------------------------------------------------------------------------------------
2021-01-16 00:10:06,033 EPOCH 19 done: loss 0.1316 - lr 0.0000000
2021-01-16 00:10:06,033 BAD EPOCHS (no improvement): 4
2021-01-16 00:10:06,036 ----------------------------------------------------------------------------------------------------
2021-01-16 00:12:31,453 epoch 20 - iter 394/3944 - loss 0.12043092 - samples/sec: 10.84 - lr: 0.000000
2021-01-16 00:14:56,680 epoch 20 - iter 788/3944 - loss 0.13192874 - samples/sec: 10.85 - lr: 0.000000
2021-01-16 00:17:21,816 epoch 20 - iter 1182/3944 - loss 0.13095020 - samples/sec: 10.86 - lr: 0.000000
2021-01-16 00:19:46,815 epoch 20 - iter 1576/3944 - loss 0.13423819 - samples/sec: 10.87 - lr: 0.000000
2021-01-16 00:22:12,079 epoch 20 - iter 1970/3944 - loss 0.13458985 - samples/sec: 10.85 - lr: 0.000000
2021-01-16 00:24:37,900 epoch 20 - iter 2364/3944 - loss 0.13241959 - samples/sec: 10.81 - lr: 0.000000
2021-01-16 00:27:03,059 epoch 20 - iter 2758/3944 - loss 0.13235752 - samples/sec: 10.86 - lr: 0.000000
2021-01-16 00:29:28,845 epoch 20 - iter 3152/3944 - loss 0.13390899 - samples/sec: 10.81 - lr: 0.000000
2021-01-16 00:31:54,866 epoch 20 - iter 3546/3944 - loss 0.13467390 - samples/sec: 10.79 - lr: 0.000000
2021-01-16 00:34:19,750 epoch 20 - iter 3940/3944 - loss 0.13514658 - samples/sec: 10.88 - lr: 0.000000
2021-01-16 00:34:21,013 ----------------------------------------------------------------------------------------------------
2021-01-16 00:34:21,013 EPOCH 20 done: loss 0.1353 - lr 0.0000000
2021-01-16 00:34:21,013 BAD EPOCHS (no improvement): 4
2021-01-16 00:34:59,015 ----------------------------------------------------------------------------------------------------
2021-01-16 00:34:59,015 Testing using best model ...
2021-01-16 00:36:54,780 0.9319	0.9145	0.9231
2021-01-16 00:36:54,780 
Results:
- F1-score (micro) 0.9231
- F1-score (macro) 0.8691

By class:
LOC        tp: 981 - fp: 62 - fn: 70 - precision: 0.9406 - recall: 0.9334 - f1-score: 0.9370
MISC       tp: 128 - fp: 26 - fn: 78 - precision: 0.8312 - recall: 0.6214 - f1-score: 0.7111
ORG        tp: 497 - fp: 87 - fn: 87 - precision: 0.8510 - recall: 0.8510 - f1-score: 0.8510
PER        tp: 1184 - fp: 29 - fn: 26 - precision: 0.9761 - recall: 0.9785 - f1-score: 0.9773
2021-01-16 00:36:54,780 ----------------------------------------------------------------------------------------------------