File size: 58,664 Bytes
99581cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 |
2021-01-15 16:27:19,924 ----------------------------------------------------------------------------------------------------
2021-01-15 16:27:19,927 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): XLMRobertaModel(
(embeddings): RobertaEmbeddings(
(word_embeddings): Embedding(250002, 1024, padding_idx=1)
(position_embeddings): Embedding(514, 1024, padding_idx=1)
(token_type_embeddings): Embedding(1, 1024)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): RobertaEncoder(
(layer): ModuleList(
(0): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(1): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(2): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(3): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(4): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(5): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(6): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(7): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(8): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(9): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(10): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(11): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(12): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(13): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(14): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(15): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(16): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(17): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(18): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(19): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(20): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(21): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(22): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(23): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=1024, out_features=1024, bias=True)
(key): Linear(in_features=1024, out_features=1024, bias=True)
(value): Linear(in_features=1024, out_features=1024, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=1024, out_features=4096, bias=True)
)
(output): RobertaOutput(
(dense): Linear(in_features=4096, out_features=1024, bias=True)
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): RobertaPooler(
(dense): Linear(in_features=1024, out_features=1024, bias=True)
(activation): Tanh()
)
)
)
(word_dropout): WordDropout(p=0.05)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=1024, out_features=20, bias=True)
(beta): 1.0
(weights): None
(weight_tensor) None
)"
2021-01-15 16:27:19,928 ----------------------------------------------------------------------------------------------------
2021-01-15 16:27:19,928 Corpus: "Corpus: 12705 train + 3068 dev + 3160 test sentences"
2021-01-15 16:27:19,928 ----------------------------------------------------------------------------------------------------
2021-01-15 16:27:19,928 Parameters:
2021-01-15 16:27:19,928 - learning_rate: "5e-06"
2021-01-15 16:27:19,928 - mini_batch_size: "4"
2021-01-15 16:27:19,928 - patience: "3"
2021-01-15 16:27:19,928 - anneal_factor: "0.5"
2021-01-15 16:27:19,928 - max_epochs: "20"
2021-01-15 16:27:19,928 - shuffle: "True"
2021-01-15 16:27:19,928 - train_with_dev: "True"
2021-01-15 16:27:19,928 - batch_growth_annealing: "False"
2021-01-15 16:27:19,928 ----------------------------------------------------------------------------------------------------
2021-01-15 16:27:19,928 Model training base path: "resources/contextdrop/flert-de-ft+dev-xlm-roberta-large-context+drop-64-True-42"
2021-01-15 16:27:19,928 ----------------------------------------------------------------------------------------------------
2021-01-15 16:27:19,929 Device: cuda:2
2021-01-15 16:27:19,929 ----------------------------------------------------------------------------------------------------
2021-01-15 16:27:19,929 Embeddings storage mode: none
2021-01-15 16:27:19,939 ----------------------------------------------------------------------------------------------------
2021-01-15 16:29:48,177 epoch 1 - iter 394/3944 - loss 0.58149384 - samples/sec: 10.63 - lr: 0.000005
2021-01-15 16:32:16,470 epoch 1 - iter 788/3944 - loss 0.43146001 - samples/sec: 10.63 - lr: 0.000005
2021-01-15 16:34:43,836 epoch 1 - iter 1182/3944 - loss 0.38010955 - samples/sec: 10.70 - lr: 0.000005
2021-01-15 16:37:11,698 epoch 1 - iter 1576/3944 - loss 0.34431028 - samples/sec: 10.66 - lr: 0.000005
2021-01-15 16:39:39,747 epoch 1 - iter 1970/3944 - loss 0.32744939 - samples/sec: 10.65 - lr: 0.000005
2021-01-15 16:42:07,631 epoch 1 - iter 2364/3944 - loss 0.31857823 - samples/sec: 10.66 - lr: 0.000005
2021-01-15 16:44:34,485 epoch 1 - iter 2758/3944 - loss 0.30456838 - samples/sec: 10.73 - lr: 0.000005
2021-01-15 16:47:02,394 epoch 1 - iter 3152/3944 - loss 0.29905511 - samples/sec: 10.66 - lr: 0.000005
2021-01-15 16:49:29,868 epoch 1 - iter 3546/3944 - loss 0.29295683 - samples/sec: 10.69 - lr: 0.000005
2021-01-15 16:51:58,152 epoch 1 - iter 3940/3944 - loss 0.28678117 - samples/sec: 10.63 - lr: 0.000005
2021-01-15 16:51:59,459 ----------------------------------------------------------------------------------------------------
2021-01-15 16:51:59,459 EPOCH 1 done: loss 0.2866 - lr 0.0000050
2021-01-15 16:51:59,459 BAD EPOCHS (no improvement): 4
2021-01-15 16:51:59,462 ----------------------------------------------------------------------------------------------------
2021-01-15 16:54:27,337 epoch 2 - iter 394/3944 - loss 0.23763366 - samples/sec: 10.66 - lr: 0.000005
2021-01-15 16:56:55,082 epoch 2 - iter 788/3944 - loss 0.20691177 - samples/sec: 10.67 - lr: 0.000005
2021-01-15 16:59:22,869 epoch 2 - iter 1182/3944 - loss 0.21072023 - samples/sec: 10.66 - lr: 0.000005
2021-01-15 17:01:50,770 epoch 2 - iter 1576/3944 - loss 0.20705774 - samples/sec: 10.66 - lr: 0.000005
2021-01-15 17:04:18,029 epoch 2 - iter 1970/3944 - loss 0.20345128 - samples/sec: 10.70 - lr: 0.000005
2021-01-15 17:06:45,050 epoch 2 - iter 2364/3944 - loss 0.19762390 - samples/sec: 10.72 - lr: 0.000005
2021-01-15 17:09:11,995 epoch 2 - iter 2758/3944 - loss 0.20206661 - samples/sec: 10.73 - lr: 0.000005
2021-01-15 17:11:39,892 epoch 2 - iter 3152/3944 - loss 0.19768991 - samples/sec: 10.66 - lr: 0.000005
2021-01-15 17:14:07,315 epoch 2 - iter 3546/3944 - loss 0.20115805 - samples/sec: 10.69 - lr: 0.000005
2021-01-15 17:16:34,784 epoch 2 - iter 3940/3944 - loss 0.19983876 - samples/sec: 10.69 - lr: 0.000005
2021-01-15 17:16:36,073 ----------------------------------------------------------------------------------------------------
2021-01-15 17:16:36,074 EPOCH 2 done: loss 0.1996 - lr 0.0000049
2021-01-15 17:16:36,074 BAD EPOCHS (no improvement): 4
2021-01-15 17:16:36,077 ----------------------------------------------------------------------------------------------------
2021-01-15 17:19:03,268 epoch 3 - iter 394/3944 - loss 0.16475767 - samples/sec: 10.71 - lr: 0.000005
2021-01-15 17:21:30,430 epoch 3 - iter 788/3944 - loss 0.16467943 - samples/sec: 10.71 - lr: 0.000005
2021-01-15 17:23:57,785 epoch 3 - iter 1182/3944 - loss 0.16820842 - samples/sec: 10.70 - lr: 0.000005
2021-01-15 17:26:25,077 epoch 3 - iter 1576/3944 - loss 0.17111347 - samples/sec: 10.70 - lr: 0.000005
2021-01-15 17:28:51,818 epoch 3 - iter 1970/3944 - loss 0.17649180 - samples/sec: 10.74 - lr: 0.000005
2021-01-15 17:31:18,679 epoch 3 - iter 2364/3944 - loss 0.18734800 - samples/sec: 10.73 - lr: 0.000005
2021-01-15 17:33:45,680 epoch 3 - iter 2758/3944 - loss 0.18971106 - samples/sec: 10.72 - lr: 0.000005
2021-01-15 17:36:13,246 epoch 3 - iter 3152/3944 - loss 0.18746164 - samples/sec: 10.68 - lr: 0.000005
2021-01-15 17:38:40,672 epoch 3 - iter 3546/3944 - loss 0.19218287 - samples/sec: 10.69 - lr: 0.000005
2021-01-15 17:41:07,957 epoch 3 - iter 3940/3944 - loss 0.19381799 - samples/sec: 10.70 - lr: 0.000005
2021-01-15 17:41:09,257 ----------------------------------------------------------------------------------------------------
2021-01-15 17:41:09,257 EPOCH 3 done: loss 0.1938 - lr 0.0000047
2021-01-15 17:41:09,257 BAD EPOCHS (no improvement): 4
2021-01-15 17:41:09,260 ----------------------------------------------------------------------------------------------------
2021-01-15 17:43:36,593 epoch 4 - iter 394/3944 - loss 0.16488209 - samples/sec: 10.70 - lr: 0.000005
2021-01-15 17:46:04,133 epoch 4 - iter 788/3944 - loss 0.17473605 - samples/sec: 10.68 - lr: 0.000005
2021-01-15 17:48:31,440 epoch 4 - iter 1182/3944 - loss 0.16738039 - samples/sec: 10.70 - lr: 0.000005
2021-01-15 17:50:58,858 epoch 4 - iter 1576/3944 - loss 0.16596805 - samples/sec: 10.69 - lr: 0.000005
2021-01-15 17:53:26,260 epoch 4 - iter 1970/3944 - loss 0.16483490 - samples/sec: 10.69 - lr: 0.000005
2021-01-15 17:55:53,072 epoch 4 - iter 2364/3944 - loss 0.16752558 - samples/sec: 10.74 - lr: 0.000005
2021-01-15 17:58:19,944 epoch 4 - iter 2758/3944 - loss 0.16537132 - samples/sec: 10.73 - lr: 0.000005
2021-01-15 18:00:47,459 epoch 4 - iter 3152/3944 - loss 0.16501133 - samples/sec: 10.68 - lr: 0.000005
2021-01-15 18:03:15,474 epoch 4 - iter 3546/3944 - loss 0.16726116 - samples/sec: 10.65 - lr: 0.000005
2021-01-15 18:05:43,265 epoch 4 - iter 3940/3944 - loss 0.16914137 - samples/sec: 10.66 - lr: 0.000005
2021-01-15 18:05:44,543 ----------------------------------------------------------------------------------------------------
2021-01-15 18:05:44,543 EPOCH 4 done: loss 0.1690 - lr 0.0000045
2021-01-15 18:05:44,543 BAD EPOCHS (no improvement): 4
2021-01-15 18:05:44,547 ----------------------------------------------------------------------------------------------------
2021-01-15 18:08:12,011 epoch 5 - iter 394/3944 - loss 0.15833616 - samples/sec: 10.69 - lr: 0.000004
2021-01-15 18:10:38,832 epoch 5 - iter 788/3944 - loss 0.16551527 - samples/sec: 10.74 - lr: 0.000004
2021-01-15 18:13:06,451 epoch 5 - iter 1182/3944 - loss 0.17177677 - samples/sec: 10.68 - lr: 0.000004
2021-01-15 18:15:34,493 epoch 5 - iter 1576/3944 - loss 0.17301128 - samples/sec: 10.65 - lr: 0.000004
2021-01-15 18:18:03,239 epoch 5 - iter 1970/3944 - loss 0.17650116 - samples/sec: 10.60 - lr: 0.000004
2021-01-15 18:20:32,247 epoch 5 - iter 2364/3944 - loss 0.17631064 - samples/sec: 10.58 - lr: 0.000004
2021-01-15 18:22:59,227 epoch 5 - iter 2758/3944 - loss 0.17537379 - samples/sec: 10.72 - lr: 0.000004
2021-01-15 18:25:24,556 epoch 5 - iter 3152/3944 - loss 0.17617518 - samples/sec: 10.85 - lr: 0.000004
2021-01-15 18:27:50,096 epoch 5 - iter 3546/3944 - loss 0.17367857 - samples/sec: 10.83 - lr: 0.000004
2021-01-15 18:30:16,704 epoch 5 - iter 3940/3944 - loss 0.17093901 - samples/sec: 10.75 - lr: 0.000004
2021-01-15 18:30:18,004 ----------------------------------------------------------------------------------------------------
2021-01-15 18:30:18,004 EPOCH 5 done: loss 0.1708 - lr 0.0000043
2021-01-15 18:30:18,004 BAD EPOCHS (no improvement): 4
2021-01-15 18:30:18,007 ----------------------------------------------------------------------------------------------------
2021-01-15 18:32:42,968 epoch 6 - iter 394/3944 - loss 0.17698825 - samples/sec: 10.87 - lr: 0.000004
2021-01-15 18:35:08,371 epoch 6 - iter 788/3944 - loss 0.16713416 - samples/sec: 10.84 - lr: 0.000004
2021-01-15 18:37:34,014 epoch 6 - iter 1182/3944 - loss 0.16902562 - samples/sec: 10.82 - lr: 0.000004
2021-01-15 18:40:00,144 epoch 6 - iter 1576/3944 - loss 0.16574844 - samples/sec: 10.79 - lr: 0.000004
2021-01-15 18:42:26,534 epoch 6 - iter 1970/3944 - loss 0.16657012 - samples/sec: 10.77 - lr: 0.000004
2021-01-15 18:44:52,613 epoch 6 - iter 2364/3944 - loss 0.16641916 - samples/sec: 10.79 - lr: 0.000004
2021-01-15 18:47:17,983 epoch 6 - iter 2758/3944 - loss 0.16274268 - samples/sec: 10.84 - lr: 0.000004
2021-01-15 18:49:43,878 epoch 6 - iter 3152/3944 - loss 0.16172776 - samples/sec: 10.80 - lr: 0.000004
2021-01-15 18:52:09,331 epoch 6 - iter 3546/3944 - loss 0.16291188 - samples/sec: 10.84 - lr: 0.000004
2021-01-15 18:54:34,272 epoch 6 - iter 3940/3944 - loss 0.16208591 - samples/sec: 10.87 - lr: 0.000004
2021-01-15 18:54:35,553 ----------------------------------------------------------------------------------------------------
2021-01-15 18:54:35,553 EPOCH 6 done: loss 0.1621 - lr 0.0000040
2021-01-15 18:54:35,553 BAD EPOCHS (no improvement): 4
2021-01-15 18:54:35,556 ----------------------------------------------------------------------------------------------------
2021-01-15 18:57:00,031 epoch 7 - iter 394/3944 - loss 0.15674837 - samples/sec: 10.91 - lr: 0.000004
2021-01-15 18:59:25,217 epoch 7 - iter 788/3944 - loss 0.16222971 - samples/sec: 10.86 - lr: 0.000004
2021-01-15 19:01:50,483 epoch 7 - iter 1182/3944 - loss 0.17608659 - samples/sec: 10.85 - lr: 0.000004
2021-01-15 19:04:15,644 epoch 7 - iter 1576/3944 - loss 0.17042676 - samples/sec: 10.86 - lr: 0.000004
2021-01-15 19:06:40,626 epoch 7 - iter 1970/3944 - loss 0.16835536 - samples/sec: 10.87 - lr: 0.000004
2021-01-15 19:09:06,269 epoch 7 - iter 2364/3944 - loss 0.17005717 - samples/sec: 10.82 - lr: 0.000004
2021-01-15 19:11:30,455 epoch 7 - iter 2758/3944 - loss 0.16986731 - samples/sec: 10.93 - lr: 0.000004
2021-01-15 19:13:55,363 epoch 7 - iter 3152/3944 - loss 0.16607768 - samples/sec: 10.88 - lr: 0.000004
2021-01-15 19:16:20,669 epoch 7 - iter 3546/3944 - loss 0.16408475 - samples/sec: 10.85 - lr: 0.000004
2021-01-15 19:18:46,350 epoch 7 - iter 3940/3944 - loss 0.16187247 - samples/sec: 10.82 - lr: 0.000004
2021-01-15 19:18:47,632 ----------------------------------------------------------------------------------------------------
2021-01-15 19:18:47,632 EPOCH 7 done: loss 0.1619 - lr 0.0000036
2021-01-15 19:18:47,632 BAD EPOCHS (no improvement): 4
2021-01-15 19:18:47,635 ----------------------------------------------------------------------------------------------------
2021-01-15 19:21:13,232 epoch 8 - iter 394/3944 - loss 0.15860862 - samples/sec: 10.83 - lr: 0.000004
2021-01-15 19:23:37,769 epoch 8 - iter 788/3944 - loss 0.16488914 - samples/sec: 10.90 - lr: 0.000004
2021-01-15 19:26:03,243 epoch 8 - iter 1182/3944 - loss 0.16503533 - samples/sec: 10.83 - lr: 0.000004
2021-01-15 19:28:28,171 epoch 8 - iter 1576/3944 - loss 0.16139434 - samples/sec: 10.88 - lr: 0.000003
2021-01-15 19:30:53,669 epoch 8 - iter 1970/3944 - loss 0.15723985 - samples/sec: 10.83 - lr: 0.000003
2021-01-15 19:33:18,230 epoch 8 - iter 2364/3944 - loss 0.15695920 - samples/sec: 10.90 - lr: 0.000003
2021-01-15 19:35:43,271 epoch 8 - iter 2758/3944 - loss 0.15942351 - samples/sec: 10.87 - lr: 0.000003
2021-01-15 19:38:07,861 epoch 8 - iter 3152/3944 - loss 0.16047035 - samples/sec: 10.90 - lr: 0.000003
2021-01-15 19:40:31,578 epoch 8 - iter 3546/3944 - loss 0.15915561 - samples/sec: 10.97 - lr: 0.000003
2021-01-15 19:42:56,291 epoch 8 - iter 3940/3944 - loss 0.15889894 - samples/sec: 10.89 - lr: 0.000003
2021-01-15 19:42:57,531 ----------------------------------------------------------------------------------------------------
2021-01-15 19:42:57,531 EPOCH 8 done: loss 0.1591 - lr 0.0000033
2021-01-15 19:42:57,531 BAD EPOCHS (no improvement): 4
2021-01-15 19:42:57,534 ----------------------------------------------------------------------------------------------------
2021-01-15 19:45:22,077 epoch 9 - iter 394/3944 - loss 0.15628960 - samples/sec: 10.90 - lr: 0.000003
2021-01-15 19:47:46,787 epoch 9 - iter 788/3944 - loss 0.15383703 - samples/sec: 10.89 - lr: 0.000003
2021-01-15 19:50:11,703 epoch 9 - iter 1182/3944 - loss 0.14587839 - samples/sec: 10.88 - lr: 0.000003
2021-01-15 19:52:36,604 epoch 9 - iter 1576/3944 - loss 0.14536078 - samples/sec: 10.88 - lr: 0.000003
2021-01-15 19:55:01,857 epoch 9 - iter 1970/3944 - loss 0.14842223 - samples/sec: 10.85 - lr: 0.000003
2021-01-15 19:57:26,976 epoch 9 - iter 2364/3944 - loss 0.14781136 - samples/sec: 10.86 - lr: 0.000003
2021-01-15 19:59:52,570 epoch 9 - iter 2758/3944 - loss 0.14980740 - samples/sec: 10.83 - lr: 0.000003
2021-01-15 20:02:16,766 epoch 9 - iter 3152/3944 - loss 0.15147019 - samples/sec: 10.93 - lr: 0.000003
2021-01-15 20:04:41,587 epoch 9 - iter 3546/3944 - loss 0.14992780 - samples/sec: 10.88 - lr: 0.000003
2021-01-15 20:07:07,065 epoch 9 - iter 3940/3944 - loss 0.14688711 - samples/sec: 10.83 - lr: 0.000003
2021-01-15 20:07:08,315 ----------------------------------------------------------------------------------------------------
2021-01-15 20:07:08,315 EPOCH 9 done: loss 0.1469 - lr 0.0000029
2021-01-15 20:07:08,315 BAD EPOCHS (no improvement): 4
2021-01-15 20:07:08,318 ----------------------------------------------------------------------------------------------------
2021-01-15 20:09:33,307 epoch 10 - iter 394/3944 - loss 0.15646665 - samples/sec: 10.87 - lr: 0.000003
2021-01-15 20:11:57,958 epoch 10 - iter 788/3944 - loss 0.15117971 - samples/sec: 10.90 - lr: 0.000003
2021-01-15 20:14:23,257 epoch 10 - iter 1182/3944 - loss 0.15319049 - samples/sec: 10.85 - lr: 0.000003
2021-01-15 20:16:47,405 epoch 10 - iter 1576/3944 - loss 0.14632406 - samples/sec: 10.93 - lr: 0.000003
2021-01-15 20:19:13,077 epoch 10 - iter 1970/3944 - loss 0.14880268 - samples/sec: 10.82 - lr: 0.000003
2021-01-15 20:21:37,974 epoch 10 - iter 2364/3944 - loss 0.14738769 - samples/sec: 10.88 - lr: 0.000003
2021-01-15 20:24:02,312 epoch 10 - iter 2758/3944 - loss 0.14992138 - samples/sec: 10.92 - lr: 0.000003
2021-01-15 20:26:26,416 epoch 10 - iter 3152/3944 - loss 0.14923992 - samples/sec: 10.94 - lr: 0.000003
2021-01-15 20:28:50,624 epoch 10 - iter 3546/3944 - loss 0.14988541 - samples/sec: 10.93 - lr: 0.000003
2021-01-15 20:31:15,232 epoch 10 - iter 3940/3944 - loss 0.14923823 - samples/sec: 10.90 - lr: 0.000003
2021-01-15 20:31:16,444 ----------------------------------------------------------------------------------------------------
2021-01-15 20:31:16,445 EPOCH 10 done: loss 0.1492 - lr 0.0000025
2021-01-15 20:31:16,445 BAD EPOCHS (no improvement): 4
2021-01-15 20:31:16,447 ----------------------------------------------------------------------------------------------------
2021-01-15 20:33:41,402 epoch 11 - iter 394/3944 - loss 0.16146740 - samples/sec: 10.87 - lr: 0.000002
2021-01-15 20:36:05,837 epoch 11 - iter 788/3944 - loss 0.16349808 - samples/sec: 10.91 - lr: 0.000002
2021-01-15 20:38:30,901 epoch 11 - iter 1182/3944 - loss 0.15115769 - samples/sec: 10.87 - lr: 0.000002
2021-01-15 20:40:55,438 epoch 11 - iter 1576/3944 - loss 0.14705117 - samples/sec: 10.90 - lr: 0.000002
2021-01-15 20:43:20,378 epoch 11 - iter 1970/3944 - loss 0.14991591 - samples/sec: 10.87 - lr: 0.000002
2021-01-15 20:45:45,151 epoch 11 - iter 2364/3944 - loss 0.15439655 - samples/sec: 10.89 - lr: 0.000002
2021-01-15 20:48:09,941 epoch 11 - iter 2758/3944 - loss 0.15580945 - samples/sec: 10.89 - lr: 0.000002
2021-01-15 20:50:34,492 epoch 11 - iter 3152/3944 - loss 0.15253824 - samples/sec: 10.90 - lr: 0.000002
2021-01-15 20:52:58,700 epoch 11 - iter 3546/3944 - loss 0.15092320 - samples/sec: 10.93 - lr: 0.000002
2021-01-15 20:55:23,174 epoch 11 - iter 3940/3944 - loss 0.15157769 - samples/sec: 10.91 - lr: 0.000002
2021-01-15 20:55:24,418 ----------------------------------------------------------------------------------------------------
2021-01-15 20:55:24,418 EPOCH 11 done: loss 0.1515 - lr 0.0000021
2021-01-15 20:55:24,418 BAD EPOCHS (no improvement): 4
2021-01-15 20:55:24,421 ----------------------------------------------------------------------------------------------------
2021-01-15 20:57:49,024 epoch 12 - iter 394/3944 - loss 0.13353775 - samples/sec: 10.90 - lr: 0.000002
2021-01-15 21:00:13,363 epoch 12 - iter 788/3944 - loss 0.12481125 - samples/sec: 10.92 - lr: 0.000002
2021-01-15 21:02:37,921 epoch 12 - iter 1182/3944 - loss 0.13012621 - samples/sec: 10.90 - lr: 0.000002
2021-01-15 21:05:02,587 epoch 12 - iter 1576/3944 - loss 0.13179293 - samples/sec: 10.90 - lr: 0.000002
2021-01-15 21:07:27,496 epoch 12 - iter 1970/3944 - loss 0.13504151 - samples/sec: 10.88 - lr: 0.000002
2021-01-15 21:09:52,384 epoch 12 - iter 2364/3944 - loss 0.13639646 - samples/sec: 10.88 - lr: 0.000002
2021-01-15 21:12:16,819 epoch 12 - iter 2758/3944 - loss 0.13538659 - samples/sec: 10.91 - lr: 0.000002
2021-01-15 21:14:41,429 epoch 12 - iter 3152/3944 - loss 0.13401163 - samples/sec: 10.90 - lr: 0.000002
2021-01-15 21:17:06,129 epoch 12 - iter 3546/3944 - loss 0.13558124 - samples/sec: 10.89 - lr: 0.000002
2021-01-15 21:19:30,783 epoch 12 - iter 3940/3944 - loss 0.13632296 - samples/sec: 10.90 - lr: 0.000002
2021-01-15 21:19:32,074 ----------------------------------------------------------------------------------------------------
2021-01-15 21:19:32,075 EPOCH 12 done: loss 0.1365 - lr 0.0000017
2021-01-15 21:19:32,075 BAD EPOCHS (no improvement): 4
2021-01-15 21:19:32,086 ----------------------------------------------------------------------------------------------------
2021-01-15 21:21:56,456 epoch 13 - iter 394/3944 - loss 0.13665988 - samples/sec: 10.92 - lr: 0.000002
2021-01-15 21:24:21,213 epoch 13 - iter 788/3944 - loss 0.13434678 - samples/sec: 10.89 - lr: 0.000002
2021-01-15 21:26:45,716 epoch 13 - iter 1182/3944 - loss 0.14362465 - samples/sec: 10.91 - lr: 0.000002
2021-01-15 21:29:10,027 epoch 13 - iter 1576/3944 - loss 0.14463862 - samples/sec: 10.92 - lr: 0.000002
2021-01-15 21:31:35,804 epoch 13 - iter 1970/3944 - loss 0.14445941 - samples/sec: 10.81 - lr: 0.000002
2021-01-15 21:34:02,830 epoch 13 - iter 2364/3944 - loss 0.14383136 - samples/sec: 10.72 - lr: 0.000002
2021-01-15 21:36:29,998 epoch 13 - iter 2758/3944 - loss 0.14458719 - samples/sec: 10.71 - lr: 0.000001
2021-01-15 21:38:58,765 epoch 13 - iter 3152/3944 - loss 0.14583862 - samples/sec: 10.59 - lr: 0.000001
2021-01-15 21:41:27,066 epoch 13 - iter 3546/3944 - loss 0.14570568 - samples/sec: 10.63 - lr: 0.000001
2021-01-15 21:43:53,640 epoch 13 - iter 3940/3944 - loss 0.14616666 - samples/sec: 10.75 - lr: 0.000001
2021-01-15 21:43:54,933 ----------------------------------------------------------------------------------------------------
2021-01-15 21:43:54,933 EPOCH 13 done: loss 0.1461 - lr 0.0000014
2021-01-15 21:43:54,933 BAD EPOCHS (no improvement): 4
2021-01-15 21:43:54,953 ----------------------------------------------------------------------------------------------------
2021-01-15 21:46:22,842 epoch 14 - iter 394/3944 - loss 0.12543846 - samples/sec: 10.66 - lr: 0.000001
2021-01-15 21:48:49,756 epoch 14 - iter 788/3944 - loss 0.12854973 - samples/sec: 10.73 - lr: 0.000001
2021-01-15 21:51:16,782 epoch 14 - iter 1182/3944 - loss 0.12800828 - samples/sec: 10.72 - lr: 0.000001
2021-01-15 21:53:43,875 epoch 14 - iter 1576/3944 - loss 0.13018865 - samples/sec: 10.72 - lr: 0.000001
2021-01-15 21:56:11,947 epoch 14 - iter 1970/3944 - loss 0.13230140 - samples/sec: 10.64 - lr: 0.000001
2021-01-15 21:58:40,070 epoch 14 - iter 2364/3944 - loss 0.13276864 - samples/sec: 10.64 - lr: 0.000001
2021-01-15 22:01:07,197 epoch 14 - iter 2758/3944 - loss 0.13188423 - samples/sec: 10.71 - lr: 0.000001
2021-01-15 22:03:33,892 epoch 14 - iter 3152/3944 - loss 0.13622326 - samples/sec: 10.74 - lr: 0.000001
2021-01-15 22:06:01,226 epoch 14 - iter 3546/3944 - loss 0.13623591 - samples/sec: 10.70 - lr: 0.000001
2021-01-15 22:08:29,247 epoch 14 - iter 3940/3944 - loss 0.13681664 - samples/sec: 10.65 - lr: 0.000001
2021-01-15 22:08:30,571 ----------------------------------------------------------------------------------------------------
2021-01-15 22:08:30,571 EPOCH 14 done: loss 0.1367 - lr 0.0000010
2021-01-15 22:08:30,571 BAD EPOCHS (no improvement): 4
2021-01-15 22:08:30,619 ----------------------------------------------------------------------------------------------------
2021-01-15 22:10:58,784 epoch 15 - iter 394/3944 - loss 0.14687040 - samples/sec: 10.64 - lr: 0.000001
2021-01-15 22:13:25,824 epoch 15 - iter 788/3944 - loss 0.13773561 - samples/sec: 10.72 - lr: 0.000001
2021-01-15 22:15:52,774 epoch 15 - iter 1182/3944 - loss 0.13724811 - samples/sec: 10.73 - lr: 0.000001
2021-01-15 22:18:19,309 epoch 15 - iter 1576/3944 - loss 0.14105250 - samples/sec: 10.76 - lr: 0.000001
2021-01-15 22:20:46,418 epoch 15 - iter 1970/3944 - loss 0.13929364 - samples/sec: 10.71 - lr: 0.000001
2021-01-15 22:23:12,930 epoch 15 - iter 2364/3944 - loss 0.13891907 - samples/sec: 10.76 - lr: 0.000001
2021-01-15 22:25:40,051 epoch 15 - iter 2758/3944 - loss 0.13941754 - samples/sec: 10.71 - lr: 0.000001
2021-01-15 22:28:06,583 epoch 15 - iter 3152/3944 - loss 0.14071295 - samples/sec: 10.76 - lr: 0.000001
2021-01-15 22:30:32,954 epoch 15 - iter 3546/3944 - loss 0.13981342 - samples/sec: 10.77 - lr: 0.000001
2021-01-15 22:33:00,397 epoch 15 - iter 3940/3944 - loss 0.13880390 - samples/sec: 10.69 - lr: 0.000001
2021-01-15 22:33:01,714 ----------------------------------------------------------------------------------------------------
2021-01-15 22:33:01,715 EPOCH 15 done: loss 0.1387 - lr 0.0000007
2021-01-15 22:33:01,715 BAD EPOCHS (no improvement): 4
2021-01-15 22:33:01,718 ----------------------------------------------------------------------------------------------------
2021-01-15 22:35:29,035 epoch 16 - iter 394/3944 - loss 0.14291727 - samples/sec: 10.70 - lr: 0.000001
2021-01-15 22:37:56,417 epoch 16 - iter 788/3944 - loss 0.13149588 - samples/sec: 10.69 - lr: 0.000001
2021-01-15 22:40:23,990 epoch 16 - iter 1182/3944 - loss 0.13203036 - samples/sec: 10.68 - lr: 0.000001
2021-01-15 22:42:51,538 epoch 16 - iter 1576/3944 - loss 0.13134927 - samples/sec: 10.68 - lr: 0.000001
2021-01-15 22:45:19,113 epoch 16 - iter 1970/3944 - loss 0.13179903 - samples/sec: 10.68 - lr: 0.000001
2021-01-15 22:47:46,156 epoch 16 - iter 2364/3944 - loss 0.13354076 - samples/sec: 10.72 - lr: 0.000001
2021-01-15 22:50:13,300 epoch 16 - iter 2758/3944 - loss 0.13476940 - samples/sec: 10.71 - lr: 0.000001
2021-01-15 22:52:38,377 epoch 16 - iter 3152/3944 - loss 0.13497255 - samples/sec: 10.86 - lr: 0.000001
2021-01-15 22:55:03,400 epoch 16 - iter 3546/3944 - loss 0.13634147 - samples/sec: 10.87 - lr: 0.000001
2021-01-15 22:57:27,892 epoch 16 - iter 3940/3944 - loss 0.13727031 - samples/sec: 10.91 - lr: 0.000000
2021-01-15 22:57:29,178 ----------------------------------------------------------------------------------------------------
2021-01-15 22:57:29,178 EPOCH 16 done: loss 0.1376 - lr 0.0000005
2021-01-15 22:57:29,178 BAD EPOCHS (no improvement): 4
2021-01-15 22:57:29,181 ----------------------------------------------------------------------------------------------------
2021-01-15 22:59:53,548 epoch 17 - iter 394/3944 - loss 0.14524632 - samples/sec: 10.92 - lr: 0.000000
2021-01-15 23:02:18,357 epoch 17 - iter 788/3944 - loss 0.14652155 - samples/sec: 10.88 - lr: 0.000000
2021-01-15 23:04:43,610 epoch 17 - iter 1182/3944 - loss 0.13884438 - samples/sec: 10.85 - lr: 0.000000
2021-01-15 23:07:08,806 epoch 17 - iter 1576/3944 - loss 0.13549453 - samples/sec: 10.86 - lr: 0.000000
2021-01-15 23:09:34,317 epoch 17 - iter 1970/3944 - loss 0.13560330 - samples/sec: 10.83 - lr: 0.000000
2021-01-15 23:11:59,595 epoch 17 - iter 2364/3944 - loss 0.13972037 - samples/sec: 10.85 - lr: 0.000000
2021-01-15 23:14:24,656 epoch 17 - iter 2758/3944 - loss 0.14040167 - samples/sec: 10.87 - lr: 0.000000
2021-01-15 23:16:49,375 epoch 17 - iter 3152/3944 - loss 0.13946642 - samples/sec: 10.89 - lr: 0.000000
2021-01-15 23:19:15,069 epoch 17 - iter 3546/3944 - loss 0.13849877 - samples/sec: 10.82 - lr: 0.000000
2021-01-15 23:21:40,239 epoch 17 - iter 3940/3944 - loss 0.13743522 - samples/sec: 10.86 - lr: 0.000000
2021-01-15 23:21:41,530 ----------------------------------------------------------------------------------------------------
2021-01-15 23:21:41,530 EPOCH 17 done: loss 0.1373 - lr 0.0000003
2021-01-15 23:21:41,530 BAD EPOCHS (no improvement): 4
2021-01-15 23:21:41,533 ----------------------------------------------------------------------------------------------------
2021-01-15 23:24:07,941 epoch 18 - iter 394/3944 - loss 0.13214318 - samples/sec: 10.77 - lr: 0.000000
2021-01-15 23:26:34,009 epoch 18 - iter 788/3944 - loss 0.14259440 - samples/sec: 10.79 - lr: 0.000000
2021-01-15 23:29:00,116 epoch 18 - iter 1182/3944 - loss 0.13753739 - samples/sec: 10.79 - lr: 0.000000
2021-01-15 23:31:25,087 epoch 18 - iter 1576/3944 - loss 0.13957844 - samples/sec: 10.87 - lr: 0.000000
2021-01-15 23:33:50,076 epoch 18 - iter 1970/3944 - loss 0.13743370 - samples/sec: 10.87 - lr: 0.000000
2021-01-15 23:36:14,776 epoch 18 - iter 2364/3944 - loss 0.13970779 - samples/sec: 10.89 - lr: 0.000000
2021-01-15 23:38:38,473 epoch 18 - iter 2758/3944 - loss 0.13932537 - samples/sec: 10.97 - lr: 0.000000
2021-01-15 23:41:03,249 epoch 18 - iter 3152/3944 - loss 0.13745278 - samples/sec: 10.89 - lr: 0.000000
2021-01-15 23:43:28,499 epoch 18 - iter 3546/3944 - loss 0.13924606 - samples/sec: 10.85 - lr: 0.000000
2021-01-15 23:45:53,779 epoch 18 - iter 3940/3944 - loss 0.13920658 - samples/sec: 10.85 - lr: 0.000000
2021-01-15 23:45:55,039 ----------------------------------------------------------------------------------------------------
2021-01-15 23:45:55,040 EPOCH 18 done: loss 0.1400 - lr 0.0000001
2021-01-15 23:45:55,040 BAD EPOCHS (no improvement): 4
2021-01-15 23:45:55,060 ----------------------------------------------------------------------------------------------------
2021-01-15 23:48:19,848 epoch 19 - iter 394/3944 - loss 0.12011491 - samples/sec: 10.89 - lr: 0.000000
2021-01-15 23:50:45,410 epoch 19 - iter 788/3944 - loss 0.12712191 - samples/sec: 10.83 - lr: 0.000000
2021-01-15 23:53:10,309 epoch 19 - iter 1182/3944 - loss 0.12601271 - samples/sec: 10.88 - lr: 0.000000
2021-01-15 23:55:35,025 epoch 19 - iter 1576/3944 - loss 0.12838937 - samples/sec: 10.89 - lr: 0.000000
2021-01-15 23:57:59,862 epoch 19 - iter 1970/3944 - loss 0.13018004 - samples/sec: 10.88 - lr: 0.000000
2021-01-16 00:00:24,890 epoch 19 - iter 2364/3944 - loss 0.12867846 - samples/sec: 10.87 - lr: 0.000000
2021-01-16 00:02:49,627 epoch 19 - iter 2758/3944 - loss 0.12932283 - samples/sec: 10.89 - lr: 0.000000
2021-01-16 00:05:14,400 epoch 19 - iter 3152/3944 - loss 0.12859496 - samples/sec: 10.89 - lr: 0.000000
2021-01-16 00:07:39,476 epoch 19 - iter 3546/3944 - loss 0.12980219 - samples/sec: 10.86 - lr: 0.000000
2021-01-16 00:10:04,796 epoch 19 - iter 3940/3944 - loss 0.13157911 - samples/sec: 10.85 - lr: 0.000000
2021-01-16 00:10:06,033 ----------------------------------------------------------------------------------------------------
2021-01-16 00:10:06,033 EPOCH 19 done: loss 0.1316 - lr 0.0000000
2021-01-16 00:10:06,033 BAD EPOCHS (no improvement): 4
2021-01-16 00:10:06,036 ----------------------------------------------------------------------------------------------------
2021-01-16 00:12:31,453 epoch 20 - iter 394/3944 - loss 0.12043092 - samples/sec: 10.84 - lr: 0.000000
2021-01-16 00:14:56,680 epoch 20 - iter 788/3944 - loss 0.13192874 - samples/sec: 10.85 - lr: 0.000000
2021-01-16 00:17:21,816 epoch 20 - iter 1182/3944 - loss 0.13095020 - samples/sec: 10.86 - lr: 0.000000
2021-01-16 00:19:46,815 epoch 20 - iter 1576/3944 - loss 0.13423819 - samples/sec: 10.87 - lr: 0.000000
2021-01-16 00:22:12,079 epoch 20 - iter 1970/3944 - loss 0.13458985 - samples/sec: 10.85 - lr: 0.000000
2021-01-16 00:24:37,900 epoch 20 - iter 2364/3944 - loss 0.13241959 - samples/sec: 10.81 - lr: 0.000000
2021-01-16 00:27:03,059 epoch 20 - iter 2758/3944 - loss 0.13235752 - samples/sec: 10.86 - lr: 0.000000
2021-01-16 00:29:28,845 epoch 20 - iter 3152/3944 - loss 0.13390899 - samples/sec: 10.81 - lr: 0.000000
2021-01-16 00:31:54,866 epoch 20 - iter 3546/3944 - loss 0.13467390 - samples/sec: 10.79 - lr: 0.000000
2021-01-16 00:34:19,750 epoch 20 - iter 3940/3944 - loss 0.13514658 - samples/sec: 10.88 - lr: 0.000000
2021-01-16 00:34:21,013 ----------------------------------------------------------------------------------------------------
2021-01-16 00:34:21,013 EPOCH 20 done: loss 0.1353 - lr 0.0000000
2021-01-16 00:34:21,013 BAD EPOCHS (no improvement): 4
2021-01-16 00:34:59,015 ----------------------------------------------------------------------------------------------------
2021-01-16 00:34:59,015 Testing using best model ...
2021-01-16 00:36:54,780 0.9319 0.9145 0.9231
2021-01-16 00:36:54,780
Results:
- F1-score (micro) 0.9231
- F1-score (macro) 0.8691
By class:
LOC tp: 981 - fp: 62 - fn: 70 - precision: 0.9406 - recall: 0.9334 - f1-score: 0.9370
MISC tp: 128 - fp: 26 - fn: 78 - precision: 0.8312 - recall: 0.6214 - f1-score: 0.7111
ORG tp: 497 - fp: 87 - fn: 87 - precision: 0.8510 - recall: 0.8510 - f1-score: 0.8510
PER tp: 1184 - fp: 29 - fn: 26 - precision: 0.9761 - recall: 0.9785 - f1-score: 0.9773
2021-01-16 00:36:54,780 ----------------------------------------------------------------------------------------------------
|