File size: 3,165 Bytes
cab4c81 47cab7e 0645a00 cab4c81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
license: apache-2.0
tags:
- function-calling
---
# Fireworks Function Calling (FireFunction) Model V1
<img src="https://cdn-uploads.huggingface.co/production/uploads/64b6f3a72f5a966b9722de88/12mfdeAJzW1NdKrN_J--L.png" alt="firefunction" width="400"/>
FireFunction is a state-of-the-art function calling model with a commercially viable license.
💡 The model is hosted on the [Fireworks](https://fireworks.ai/models/fireworks/firefunction-v1) platform, offering blazing fast inference and API compatible with [OpenAI function calling](https://platform.openai.com/docs/guides/function-calling).
```sh
OPENAI_API_BASE=https://api.fireworks.ai/inference/v1
OPENAI_API_KEY=<YOUR_FIREWORKS_API_KEY>
MODEL=accounts/fireworks/models/firefunction-v1
```
## Intended Use and Limitations
### Primary Use
Although the model was trained on a variety of tasks, it performs best on:
* single-turn request routing to a function picked from a pool of up to 20 function specs.
* structured information extraction.
### Out-of-Scope Use
The model was not optimized for the following use cases:
* general multi-turn chat,
* parallel and nested function calls in a single response. These can be broken into multiple messages.
## How to use the model
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import json
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("fireworks-ai/firefunction-v1")
tokenizer = AutoTokenizer.from_pretrained("fireworks-ai/firefunction-v1")
function_spec = [
{
"name": "get_stock_price",
"description": "Get the current stock price",
"parameters": {
"type": "object",
"properties": {
"symbol": {
"type": "string",
"description": "The stock symbol, e.g. AAPL, GOOG"
}
},
"required": [
"symbol"
]
}
},
{
"name": "check_word_anagram",
"description": "Check if two words are anagrams of each other",
"parameters": {
"type": "object",
"properties": {
"word1": {
"type": "string",
"description": "The first word"
},
"word2": {
"type": "string",
"description": "The second word"
}
},
"required": [
"word1",
"word2"
]
}
}
]
functions = json.dumps(functions, indent=4)
messages = [
{'role': 'functions', 'content': functions},
{'role': 'system', 'content': 'You are a helpful assistant with access to functions. Use them if required.'},
{'role': 'user', 'content': 'Hi, can you tell me the current stock price of AAPL?'}
]
encoded = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
``` |