Back to all models
token-classification mask_token: [MASK]
Query this model
🔥 This model is currently loaded and running on the Inference API. ⚠️ This model could not be loaded by the inference API. ⚠️ This model can be loaded on the Inference API on-demand.
JSON Output
API endpoint  

⚡️ Upgrade your account to access the Inference API

Share Copied link to clipboard

Monthly model downloads

fhswf/bert_de_ner fhswf/bert_de_ner
last 30 days



Contributed by

Fachhochschule Südwestfalen university
1 team member · 1 model

How to use this model directly from the 🤗/transformers library:

Copy to clipboard
from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("fhswf/bert_de_ner") model = AutoModelForTokenClassification.from_pretrained("fhswf/bert_de_ner")
Uploaded in S3


What is it?

This is a German BERT model fine-tuned for named entity recognition.

Base model & training

This model is based on bert-base-german-dbmdz-cased and has been fine-tuned for NER on the training data from GermEval2014.

Model results

The results on the test data from GermEval2014 are (entities only):

Precision Recall F1-Score
0.817 0.842 0.829

How to use

>>> from transformers import pipeline

>>> classifier = pipeline('ner', model="fhswf/bert_de_ner")
>>> classifier('Von der Organisation „medico international“ hieß es, die EU entziehe sich seit vielen Jahren der Verantwortung für die Menschen an ihren Außengrenzen.')

[{'word': 'med', 'score': 0.9996621608734131, 'entity': 'B-ORG', 'index': 6},
 {'word': '##ico', 'score': 0.9995362162590027, 'entity': 'I-ORG', 'index': 7},
 {'word': 'international',
  'score': 0.9996932744979858,
  'entity': 'I-ORG',
  'index': 8},
 {'word': 'eu', 'score': 0.9997008442878723, 'entity': 'B-ORG', 'index': 14}]