YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

ffgcc/InfoCSE-bert-base model

This model is based on bert-base-uncased pretrained model.

Model Recycling

Evaluation on 36 datasets using ffgcc/InfoCSE-bert-base as a base model yields average score of 74.28 in comparison to 72.20 by bert-base-uncased.

The model is ranked 1st among all tested models for the bert-base-uncased architecture as of 21/12/2022 Results:

20_newsgroup ag_news amazon_reviews_multi anli boolq cb cola copa dbpedia esnli financial_phrasebank imdb isear mnli mrpc multirc poem_sentiment qnli qqp rotten_tomatoes rte sst2 sst_5bins stsb trec_coarse trec_fine tweet_ev_emoji tweet_ev_emotion tweet_ev_hate tweet_ev_irony tweet_ev_offensive tweet_ev_sentiment wic wnli wsc yahoo_answers
82.3818 89.3333 66.34 48.2188 71.315 71.4286 83.9885 61 77.1667 90.2891 83.6 90.872 71.7731 84.3267 84.0686 58.6015 75 91.1404 90.6752 85.8349 61.7329 92.5459 54.2534 86.9799 97.2 77.2 36.82 81.14 54.1077 65.4337 85.3488 70.4982 66.9279 50.7042 63.4615 72.2

For more information, see: Model Recycling

Downloads last month
10
Inference API
Unable to determine this model’s pipeline type. Check the docs .