Edit model card

UNA-ThePitbull 21.4B v2

Introducing the best LLM in the industry. Nearly as good as a 70B, just a 21.4B based on saltlux/luxia-21.4b-alignment-v1.0 UNA - ThePitbull 21.4B v2

This model has not been poisoned to score high and be useless. We release him becaues its the real deal of EQ & IQ all together in a crazy powerful smart and conversational model.

Quant Versions available at bartowski/UNA-ThePitbull-21.4B-v2-GGUF

Difference V1 vs V2

On V2 we implemented a different UNA strategy and covered partially the MLP's and Attention Layers. We also performed further SFT over V1 and further DPO over V1 and we'll release some of those soon as well.

Changes

  1. SFT over V1 with Replete-AI/code_bagel_hermes-2.5 at 1.0e-4 till 5.0e-5 for 1 epoch
  2. DPO with: 1.0e-4 to min_lr 5.0e-5 for 1 epoch
  • mlabonne/orpo-dpo-mix-40k
  • jondurbin/py-dpo-v0.1

Evaluations

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 77.82
AI2 Reasoning Challenge (25-Shot) 77.73
HellaSwag (10-Shot) 91.79
MMLU (5-Shot) 68.25
TruthfulQA (0-shot) 78.24
Winogrande (5-shot) 87.37
GSM8k (5-shot) 63.53

Can only be compared with its non-una base model: the original luxia-21.4b and ThePitbull-v1

UNA v2 (VLLM) Evaluations:

vllm (pretrained=/data/tools/mergekit/una-thepitbull-v5,dtype=bfloat16,gpu_memory_utilization=0.8,max_model_len=2048,data_parallel_size=2,tensor_parallel_size=4), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 8
|    Tasks     |Version|     Filter     |n-shot|  Metric   |Value |   |Stderr|
|--------------|------:|----------------|-----:|-----------|-----:|---|-----:|
|gsm8k         |      3|strict-match    |     5|exact_match|0.7695|±  |0.0116|+
|              |       |flexible-extract|     5|exact_match|0.7695|±  |0.0116|+
|hellaswag     |      1|none            |    10|acc        |0.8110|±  |0.0039|
|              |       |none            |    10|acc_norm   |0.9169|±  |0.0028|+
|winogrande    |      1|none            |     5|acc        |0.8777|±  |0.0092|+
|mmlu          |N/A    |none            |     0|acc        |0.6427|±  |0.0038|-
|arc_challenge |      1|none            |    25|acc        |0.7713|±  |0.0123|
|              |       |none            |    25|acc_norm   |0.7875|±  |0.0120|+
|truthfulqa_mc2|      2|none            |     0|acc        |0.7824|±  |0.0135|-
|mathqa        |      1|none            |     0|acc        |0.4037|±  | 0.009|
|              |       |none            |     0|acc_norm   |0.4034|±  | 0.009|+
|pubmedqa      |      1|none            |     0|acc        |0.7260|±  | 0.020|+
|boolq         |      2|none            |     0|acc        |0.8602|±  |0.0061|+

UNA v1 (VLLM) Evaluations

|    Tasks     |Version|     Filter     |n-shot|  Metric   |Value |   |Stderr|
|--------------|------:|----------------|-----:|-----------|-----:|---|-----:|
|gsm8k         |      3|strict-match    |     5|exact_match|0.7566|±  |0.0118|
|              |       |flexible-extract|     5|exact_match|0.7582|±  |0.0118|
|hellaswag     |      1|none            |    10|acc        |0.8168|±  |0.0039|
|              |       |none            |    10|acc_norm   |0.9188|±  |0.0027|
|winogrande    |      1|none            |     5|acc        |0.8635|±  |0.0097|
|mmlu          |    N/A|none            |     0|acc        |0.6444|±  |0.0038|
|arc_challenge |      1|none            |    25|acc        |0.7747|±  |0.0122|
|              |       |none            |    25|acc_norm   |0.7850|±  |0.0120|
|truthfulqa_mc2|      2|none            |     0|acc        |0.7902|±  |0.0134|
|mathqa        |      1|none            |     0|acc        |0.4030|±  | 0.009|
|              |       |none            |     0|acc_norm   |0.4034|±  | 0.009|
|pubmedqa      |      1|none            |     0|acc        |0.6860|±  |0.0208|
|boolq         |      2|none            |     0|acc        |0.8401|±  |0.0064|

Original (VLLM) Evaluations

|    Tasks     |Version|     Filter     |n-shot|  Metric   |Value |   |Stderr|
|--------------|------:|----------------|-----:|-----------|-----:|---|-----:|
|gsm8k         |      3|strict-match    |     5|exact_match|0.7528|±  |0.0119|
|              |       |flexible-extract|     5|exact_match|0.7521|±  |0.0119|
|hellaswag     |      1|none            |    10|acc        |0.8117|±  |0.0039|
|              |       |none            |    10|acc_norm   |0.9167|±  |0.0028|
|winogrande    |      1|none            |     5|acc        |0.8682|±  |0.0095|
|mmlu          |    N/A|none            |     0|acc        |0.6448|±  |0.0038|
|arc_challenge |      1|none            |    25|acc        |0.7688|±  |0.0123|
|              |       |none            |    25|acc_norm   |0.7730|±  |0.0122|
|truthfulqa_mc2|      2|none            |     0|acc        |0.7895|±  |0.0133|
|mathqa        |      1|none            |     0|acc        |0.4000|±  | 0.009|
|              |       |none            |     0|acc_norm   |0.4003|±  | 0.009|
|pubmedqa      |      1|none            |     0|acc        |0.6680|±  |0.0211|
|boolq         |      2|none            |     0|acc        |0.8346|±  |0.0065|

Citations

  • mlabonne
  • jondurbin & Replete-AI
  • bartowski
  • saltlux

If you use UNA models dont forget to cite:

@misc{unathepitbull21b,
  title={ThePitbull: Uniform Neural Alignment}, 
  author={Xavier Murias},
  year={2024},
  publisher = {Juanako.AI},
  journal = {HuggingFace repository},
  howpublished = {\url{https://huggingface.co/fblgit/UNA-ThePitbull-21.4-v1}},
}
Downloads last month
900
Safetensors
Model size
21.4B params
Tensor type
BF16
·

Datasets used to train fblgit/UNA-ThePitbull-21.4B-v2

Evaluation results