fbaldassarri's picture
Initial Upload
66071ea verified
|
raw
history blame
2.19 kB
metadata
language:
  - en
tags:
  - pytorch
  - causal-lm
  - pythia
  - autoround
  - intel
  - intel-autoround
  - awq
  - autoawq
  - auto-awq
  - woq
license: apache-2.0
model_name: Pythia 6.9b
base_model: EleutherAI/pythia-6.9b
inference: false
model_creator: EleutherAI
datasets:
  - EleutherAI/pile
pipeline_tag: text-generation
prompt_template: '{prompt} '
quantized_by: fbaldassarri

Model Information

Quantized version of EleutherAI/pythia-6.9b using torch.float32 for quantization tuning.

  • 4 bits (INT4)
  • group size = 128
  • Symmetrical Quantization
  • Method AutoAWQ

Quantization framework: Intel AutoRound v0.4.2

Note: this INT4 version of pythia-6.9b has been quantized to run inference through CPU.

Replication Recipe

Step 1 Install Requirements

I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.

python -m pip install <package> --upgrade
  • accelerate==1.2.0
  • autoawq==0.2.7.post3
  • auto_gptq==0.7.1
  • neural_compressor==3.1.1
  • torch==2.4.1+cpu
  • torchaudio==2.4.1+cpu
  • torchvision==0.19.1+cpu
  • transformers==4.47.0

Step 2 Build Intel Autoround wheel from sources

python -m pip install git+https://github.com/intel/auto-round.git

Step 3 Script for Quantization

  from transformers import AutoModelForCausalLM, AutoTokenizer
  model_name = "EleutherAI/pythia-6.9b"
  model = AutoModelForCausalLM.from_pretrained(model_name)
  tokenizer = AutoTokenizer.from_pretrained(model_name)
  from auto_round import AutoRound
  bits, group_size, sym, device, amp = 4, 128, True, 'cpu', False
  autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
  autoround.quantize()
  output_dir = "./AutoRound/EleutherAI_pythia-6.9b-autoawq-int4-gs128-sym"
  autoround.save_quantized(output_dir, format='auto_awq', inplace=True)

License

Apache 2.0 License

Disclaimer

This quantized model comes with no warrenty. It has been developed only for research purposes.