Edit model card

SmolLM-1.7B-Instruct-Finetune-LoRA

This model is a fine-tuned version of HuggingFaceTB/SmolLM-1.7B on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9799

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 2503
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.6526 0.6173 25 1.5373
1.3791 1.2346 50 1.1969
1.1244 1.8519 75 1.0547
1.0282 2.4691 100 1.0055
1.0063 3.0864 125 0.9852
0.9864 3.7037 150 0.9799

Framework versions

  • PEFT 0.12.0
  • Transformers 4.43.3
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for farpluto/SmolLM-1.7B-Instruct-Finetune-LoRA

Adapter
(6)
this model