segformer-b0-scene-parse-150
This model is a fine-tuned version of nvidia/mit-b0 on the scene_parse_150 dataset. It achieves the following results on the evaluation set:
- Loss: 4.9388
- Mean Iou: 0.0077
- Mean Accuracy: 0.0304
- Overall Accuracy: 0.1400
- Per Category Iou: [0.24806356529539922, 0.013146457715783072, 0.5651421416142604, 0.00044333002822057814, 0.015522014422561894, 3.8342382135517314e-05, 0.0, 0.0, 0.0, 0.00035659279379073315, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.005306015969291258, 0.001087533665564206, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.021716755866611773, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0003517720517104916, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.06394611209208031, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0]
- Per Category Accuracy: [0.3347803978677994, 0.01496345206730473, 0.9016463925397143, 0.00044840238569355314, 0.01803200303917523, 4.056367279718975e-05, 0.0, 0.0, 0.0, 0.00046576156971558816, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.13008222932846047, 0.0011137754366654874, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.082421875, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.00036738255239028274, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.06752202856116897, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
---|---|---|---|---|---|---|---|---|
4.9242 | 1.0 | 20 | 4.9388 | 0.0077 | 0.0304 | 0.1400 | [0.24806356529539922, 0.013146457715783072, 0.5651421416142604, 0.00044333002822057814, 0.015522014422561894, 3.8342382135517314e-05, 0.0, 0.0, 0.0, 0.00035659279379073315, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.005306015969291258, 0.001087533665564206, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.021716755866611773, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0003517720517104916, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.06394611209208031, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0] | [0.3347803978677994, 0.01496345206730473, 0.9016463925397143, 0.00044840238569355314, 0.01803200303917523, 4.056367279718975e-05, 0.0, 0.0, 0.0, 0.00046576156971558816, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.13008222932846047, 0.0011137754366654874, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.082421875, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.00036738255239028274, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.06752202856116897, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
Framework versions
- Transformers 4.30.1
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 2