ner_fine_tuned

This model is a fine-tuned version of cahya/bert-base-indonesian-NER on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0080
  • Precision: 0.6970
  • Recall: 0.5349
  • F1: 0.6053
  • Accuracy: 0.8900

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 8 0.5649 0.625 0.4651 0.5333 0.8832
No log 2.0 16 0.6457 0.7857 0.5116 0.6197 0.9003
No log 3.0 24 0.7181 0.6471 0.5116 0.5714 0.8832
No log 4.0 32 0.8134 0.6970 0.5349 0.6053 0.8900
No log 5.0 40 0.8528 0.6667 0.5116 0.5789 0.8866
No log 6.0 48 0.8893 0.6667 0.5116 0.5789 0.8866
No log 7.0 56 0.9148 0.6667 0.5116 0.5789 0.8866
No log 8.0 64 0.9440 0.6667 0.5116 0.5789 0.8866
No log 9.0 72 0.9744 0.6970 0.5349 0.6053 0.8900
No log 10.0 80 0.9895 0.6765 0.5349 0.5974 0.8900
No log 11.0 88 0.9968 0.6970 0.5349 0.6053 0.8900
No log 12.0 96 1.0015 0.6970 0.5349 0.6053 0.8900
No log 13.0 104 1.0049 0.6970 0.5349 0.6053 0.8900
No log 14.0 112 1.0072 0.6970 0.5349 0.6053 0.8900
No log 15.0 120 1.0080 0.6970 0.5349 0.6053 0.8900

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
36
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for farizkuy/ner_fine_tuned

Finetuned
(3)
this model