Sindhi-TTS

This model is a fine-tuned version of fahadqazi/Sindhi-TTS on the None dataset. It achieves the following results on the evaluation set:

  • eval_loss: 0.4602
  • eval_runtime: 47.8291
  • eval_samples_per_second: 36.421
  • eval_steps_per_second: 18.211
  • epoch: 13.2653
  • step: 6500

How to use


  from transformers import SpeechT5ForTextToSpeech, SpeechT5ForSpeechToText
  from transformers import SpeechT5Processor
  from transformers import AutoTokenizer
  from transformers import SpeechT5HifiGan
  import torch
  from IPython.display import Audio as IPythonAudio

  device = "cuda" if torch.cuda.is_available() else "cpu"

  # imporing speech processor from another repo
  processor = SpeechT5Processor.from_pretrained("Sana1207/Hindi_SpeechT5_finetuned")

  # importing tokenizer and assigning it to the speech processor
  tokenizer = AutoTokenizer.from_pretrained("fahadqazi/Sindhi-TTS")
  processor.tokenizer = tokenizer

  # importing the model
  model = SpeechT5ForTextToSpeech.from_pretrained("fahadqazi/Sindhi-TTS")

  # importing the vocoder from microsoft's repository
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)

  # loading random vocodings (the voice)
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
  speaker_embeddings = embeddings_dataset[7306]["xvector"]
  speaker_embeddings = torch.tensor(speaker_embeddings).to(device).unsqueeze(0)


  # Generating Speech
  text = "ڪهڙا حال آهن"
  inputs = processor(text=text, return_tensors="pt").to(device)


  speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)

  IPythonAudio(speech.cpu().numpy(), rate=16000, autoplay=True)

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
213
Safetensors
Model size
154M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for fahadqazi/Sindhi-TTS

Unable to build the model tree, the base model loops to the model itself. Learn more.