polyglot-ko-12.8b-instruct

This model is a fine-tuned version of EleutherAI/polyglot-ko-12.8b on an instruction-following dataset(260k).

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU(A100 80G)
  • num_devices: 8
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 512
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5.0

Inference

import torch
from transformers import pipeline, AutoModelForCausalLM

MODEL = 'etri-xainlp/polyglot-ko-12.8b-instruct'

model = AutoModelForCausalLM.from_pretrained(
    MODEL,
    torch_dtype=torch.float16,
    low_cpu_mem_usage=True,
).to(device=f"cuda", non_blocking=True)
model.eval()

pipe = pipeline(
    'text-generation', 
    model=model,
    tokenizer=MODEL,
    device=0
)
pipe.model.config.pad_token_id = pipe.model.config.eos_token_id

def ask(x, context='', is_input_full=False):
    ans = pipe(
        f"### 질문: {x}\n\n### 맥락: {context}\n\n### 답변:" if context else f"### 질문: {x}\n\n### 답변:", 
        do_sample=True, 
        max_new_tokens=2048,
        temperature=0.9,
        top_p=0.9,
        return_full_text=False,
        eos_token_id=2,
    )
    return ans[0]['generated_text']

while True:
    quit = input('prompt?: ')
    if quit == 'q':
        break
    else:
        generation = ask(quit)
        print("etri_ai:", generation)

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
4,183
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.