polyglot-ko-12.8b-instruct
This model is a fine-tuned version of EleutherAI/polyglot-ko-12.8b on an instruction-following dataset(260k).
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- seed: 42
- distributed_type: multi-GPU(A100 80G)
- num_devices: 8
- gradient_accumulation_steps: 64
- total_train_batch_size: 512
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
Inference
import torch
from transformers import pipeline, AutoModelForCausalLM
MODEL = 'etri-xainlp/polyglot-ko-12.8b-instruct'
model = AutoModelForCausalLM.from_pretrained(
MODEL,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).to(device=f"cuda", non_blocking=True)
model.eval()
pipe = pipeline(
'text-generation',
model=model,
tokenizer=MODEL,
device=0
)
pipe.model.config.pad_token_id = pipe.model.config.eos_token_id
def ask(x, context='', is_input_full=False):
ans = pipe(
f"### 질문: {x}\n\n### 맥락: {context}\n\n### 답변:" if context else f"### 질문: {x}\n\n### 답변:",
do_sample=True,
max_new_tokens=2048,
temperature=0.9,
top_p=0.9,
return_full_text=False,
eos_token_id=2,
)
return ans[0]['generated_text']
while True:
quit = input('prompt?: ')
if quit == 'q':
break
else:
generation = ask(quit)
print("etri_ai:", generation)
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
- Downloads last month
- 4,183
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.