See axolotl config
axolotl version: 0.8.0.dev0
# === Model Configuration ===
base_model: mistralai/Mistral-Nemo-Instruct-2407 # e.g. "mistralai/Mistral-Small-24B-Instruct-2501"
load_in_8bit: false
load_in_4bit: false
# === Training Setup ===
num_epochs: 2
micro_batch_size: 16
gradient_accumulation_steps: 1
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
# === Hyperparameter Configuration ===
optimizer: apollo_adamw
# Apollo-mini configuration:
optim_args: "proj=random,rank=1,scale=128.0,scale_type=tensor,update_proj_gap=200"
# Regular Apollo configuration:
# optim_args:
optim_target_modules: all_linear
learning_rate: 1e-5
lr_scheduler: rex
weight_decay: 0.01
warmup_ratio: 0.05
# === Data Configuration ===
datasets:
- path: allura-org/inkmix-v3.0
type: chat_template
split: train
field_messages: conversations
message_field_role: from
message_field_content: value
dataset_prepared_path: last_run_prepared
chat_template: jinja
chat_template_jinja: |
{{- bos_token }}{%- for message in messages %}
{%- if message['role'] == 'system' %}
{{- '[SYSTEM_PROMPT]' + message['content'] + '[/SYSTEM_PROMPT]' }}
{%- elif message['role'] == 'user' %}
{{- '[INST]' + message['content'] + '[/INST]' }}
{%- elif message['role'] == 'assistant' %}
{{- message['content'] + eos_token }}
{%- endif %}
{%- endfor %}
# === Plugins ===
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
# === Hardware Optimization ===
gradient_checkpointing: unsloth
gradient_checkpointing_kwargs:
use_reentrant: false
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
cut_cross_entropy: true
torch_compile: true
# Only if using multiple GPUs:
# deepspeed: [DEEPSPEED_CONFIG_PATH] # e.g. "deepspeed_configs/zero3_bf16.json"
# === Wandb Tracking ===
wandb_project: nemo12b-inkmix-v3
# === Checkpointing ===
saves_per_epoch: 2
save_total_limit: 3
# === Advanced Settings ===
output_dir: offload
bf16: auto
flash_attention: true
train_on_inputs: false
group_by_length: false
logging_steps: 1
trust_remote_code: true
# nemo doesnt support system prompt ootb
tokens:
- "[SYSTEM_PROMPT]"
- "[/SYSTEM_PROMPT]"
special_tokens:
pad_token: "<pad>"
offload
This model is a fine-tuned version of mistralai/Mistral-Nemo-Instruct-2407 on the allura-org/inkmix-v3.0 dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use apollo_adamw with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=proj=random,rank=1,scale=128.0,scale_type=tensor,update_proj_gap=200
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 88
- num_epochs: 2.0
Training results
Framework versions
- Transformers 4.50.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 29
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for estrogen/remnant-12b-ep2
Base model
mistralai/Mistral-Nemo-Base-2407
Finetuned
mistralai/Mistral-Nemo-Instruct-2407