SAC Agent playing seals/Walker2d-v0
This is a trained model of a SAC agent playing seals/Walker2d-v0 using the stable-baselines3 library and the RL Zoo.
The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included.
Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
# Download model and save it into the logs/ folder
python -m utils.load_from_hub --algo sac --env seals/Walker2d-v0 -orga ernestumorga -f logs/
python enjoy.py --algo sac --env seals/Walker2d-v0 -f logs/
Training (with the RL Zoo)
python train.py --algo sac --env seals/Walker2d-v0 -f logs/
# Upload the model and generate video (when possible)
python -m utils.push_to_hub --algo sac --env seals/Walker2d-v0 -f logs/ -orga ernestumorga
Hyperparameters
OrderedDict([('batch_size', 128),
('buffer_size', 100000),
('gamma', 0.99),
('learning_rate', 0.0005845844772048097),
('learning_starts', 1000),
('n_timesteps', 1000000.0),
('policy', 'MlpPolicy'),
('policy_kwargs',
'dict(net_arch=[400, 300], log_std_init=0.1955317469998743)'),
('tau', 0.02),
('train_freq', 1),
('normalize', False)])
- Downloads last month
- 4
Evaluation results
- mean_reward on seals/Walker2d-v0self-reported2271.04 +/- 496.40