Edit model card

Note

Orginal LLaMA Weights Is not used in this model so it's MIT Licenced

I used Alpaca Prompting Method

def prompt_to_instruction(instruction, input_=None, response_=None, eos='<|endoftext|>'):
    if input_ is None:
        st1_prompting = f'Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n\n{instruction}\n\n'
    else:
        st1_prompting = f'Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n\n{instruction}\n\n### Input:\n\n{input_}\n\n'
    resp = f'### Response:\n\n{response_}{eos}' if response_ is not None else '### Response:\n\n'
    return st1_prompting + resp

Using Model In Transformers


import torch
from transformers import GenerationConfig, LlamaTokenizer, LlamaForCausalLM

# Loading Tokenizer

tokenizer = LlamaTokenizer.from_pretrained("erfanzar/LGeM-7B")

# Generation Config

gf = GenerationConfig(
  temperature=1,
  top_p=0.75,
  top_k=40,
  max_new_tokens=256,
  num_beams=4,
    
)


# Loading Model

model = LlamaForCausalLM.from_pretrained(
  "erfanzar/LGeM-7B",
  load_in_8bit=True,
  device_map="auto",
  torch_dtype=torch.float16,
    
)


while True:

  instruction = input('=>  ')
  input_ = None 
  
  prompt = prompt_to_instruction(instruction, input_)
  input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"]
  input_ids = input_ids.to(model.device)

  with torch.no_grad():
      prediction = model.generate(
          input_ids=input_ids,
          return_dict_in_generate=True,
          generation_config=gc,
          output_scores=True,
      )

      response = tokenizer.decode(prediction.sequences[0], skip_special_tokens=True)
      print('\n\n\n')
      print(response[len(prompt)+1:])
      print('\n\n')


Using Model in OST

Open Source Transformers

LGeM πŸš€

  • what is LGeM, LGeM is a CausalLM Model that is trained on self instruct data (Alpaca data) and for initialization of the first train of the main model (weights are available) I used pre weights from Alpaca LoRA (open source)

  • it's Decoder Only

  • built-in Pytorch

  • you can simply import models like

from modules import LGeMForCausalLM
  • and Training code is available at LGeM-Train.py (check source)
  • training parameters
    • learning rate 1e-4
    • AdamW (weight decay 1e-2)
    • batch 2
    • A 100 80GB used for training (4 X)
python3 LGeM-train.py
Downloads last month
3

Datasets used to train erfanzar/LGeM-7B