Text Generation
Transformers
PyTorch
English
Spanish
llama
text-generation-inference
Inference Endpoints

Note

Orginal LLaMA Weights Is not used in this model so it's MIT Licenced

I used Alpaca Prompting Method

def prompt_to_instruction(instruction, input_=None, response_=None, eos='<|endoftext|>'):
    if input_ is None:
        st1_prompting = f'Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n\n{instruction}\n\n'
    else:
        st1_prompting = f'Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n\n{instruction}\n\n### Input:\n\n{input_}\n\n'
    resp = f'### Response:\n\n{response_}{eos}' if response_ is not None else '### Response:\n\n'
    return st1_prompting + resp

Using Model In Transformers


import torch
from transformers import GenerationConfig, LlamaTokenizer, LlamaForCausalLM

# Loading Tokenizer

tokenizer = LlamaTokenizer.from_pretrained("erfanzar/LGeM-7B")

# Generation Config

gf = GenerationConfig(
  temperature=1,
  top_p=0.75,
  top_k=40,
  max_new_tokens=256,
  num_beams=4,
    
)


# Loading Model

model = LlamaForCausalLM.from_pretrained(
  "erfanzar/LGeM-7B",
  load_in_8bit=True,
  device_map="auto",
  torch_dtype=torch.float16,
    
)


while True:

  instruction = input('=>  ')
  input_ = None 
  
  prompt = prompt_to_instruction(instruction, input_)
  input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"]
  input_ids = input_ids.to(model.device)

  with torch.no_grad():
      prediction = model.generate(
          input_ids=input_ids,
          return_dict_in_generate=True,
          generation_config=gc,
          output_scores=True,
      )

      response = tokenizer.decode(prediction.sequences[0], skip_special_tokens=True)
      print('\n\n\n')
      print(response[len(prompt)+1:])
      print('\n\n')


Using Model in OST

Open Source Transformers

LGeM πŸš€

  • what is LGeM, LGeM is a CausalLM Model that is trained on self instruct data (Alpaca data) and for initialization of the first train of the main model (weights are available) I used pre weights from Alpaca LoRA (open source)

  • it's Decoder Only

  • built-in Pytorch

  • you can simply import models like

from modules import LGeMForCausalLM
  • and Training code is available at LGeM-Train.py (check source)
  • training parameters
    • learning rate 1e-4
    • AdamW (weight decay 1e-2)
    • batch 2
    • A 100 80GB used for training (4 X)
python3 LGeM-train.py
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train erfanzar/LGeM-7B