
See axolotl config
axolotl version: 0.8.0.dev0
base_model: NousResearch/Meta-Llama-3-8B-Instruct
# optionally might have model_type or tokenizer_type
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
load_in_8bit: true
load_in_4bit: false
strict: false
chat_template: llama3
datasets:
- path: entfane/nart-10k-random-sample
type: chat_template
field_messages: conversations
message_property_mappings:
role: from
content: value
roles:
user:
- human
assistant:
- gpt
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/lora-out
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: therapist
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model: checkpoint
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
outputs/lora-out
This model is a fine-tuned version of NousResearch/Meta-Llama-3-8B-Instruct on the entfane/nart-10k-random-sample dataset. It achieves the following results on the evaluation set:
- Loss: 0.8194
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.5406 | 0.0008 | 1 | 1.5780 |
0.8652 | 0.2501 | 297 | 0.8737 |
0.8252 | 0.5002 | 594 | 0.8402 |
0.8463 | 0.7503 | 891 | 0.8194 |
Framework versions
- PEFT 0.14.0
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.
Model tree for entfane/therapist-8b-lora
Base model
NousResearch/Meta-Llama-3-8B-Instruct