Built with Axolotl

See axolotl config

axolotl version: 0.8.0.dev0

base_model: NousResearch/Meta-Llama-3-8B-Instruct
# optionally might have model_type or tokenizer_type
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name

load_in_8bit: true
load_in_4bit: false
strict: false

chat_template: llama3
datasets:
  - path: entfane/nart-10k-random-sample
    type: chat_template
    field_messages: conversations
    message_property_mappings:
      role: from
      content: value
    roles:
      user:
        - human
      assistant:
        - gpt

dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/lora-out

sequence_len: 4096
sample_packing: false
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project: therapist
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model: checkpoint

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
   pad_token: <|end_of_text|>

Visualize in Weights & Biases

outputs/lora-out

This model is a fine-tuned version of NousResearch/Meta-Llama-3-8B-Instruct on the entfane/nart-10k-random-sample dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8194

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss
1.5406 0.0008 1 1.5780
0.8652 0.2501 297 0.8737
0.8252 0.5002 594 0.8402
0.8463 0.7503 891 0.8194

Framework versions

  • PEFT 0.14.0
  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for entfane/therapist-8b-lora

Adapter
(93)
this model

Dataset used to train entfane/therapist-8b-lora