rule_learning_margin_3mm_many_negatives_spanpred_attention

This model is a fine-tuned version of enoriega/rule_softmatching on the enoriega/odinsynth_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2196
  • Margin Accuracy: 0.8969

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2000
  • total_train_batch_size: 8000
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Margin Accuracy
0.3149 0.16 60 0.3098 0.8608
0.2754 0.32 120 0.2725 0.8733
0.2619 0.48 180 0.2512 0.8872
0.2378 0.64 240 0.2391 0.8925
0.2451 0.8 300 0.2305 0.8943
0.2357 0.96 360 0.2292 0.8949
0.2335 1.12 420 0.2269 0.8952
0.2403 1.28 480 0.2213 0.8957
0.2302 1.44 540 0.2227 0.8963
0.2353 1.6 600 0.2222 0.8961
0.2271 1.76 660 0.2207 0.8964
0.228 1.92 720 0.2218 0.8967
0.2231 2.08 780 0.2201 0.8967
0.2128 2.24 840 0.2219 0.8967
0.2186 2.4 900 0.2202 0.8967
0.2245 2.56 960 0.2205 0.8969
0.2158 2.72 1020 0.2196 0.8969
0.2106 2.88 1080 0.2192 0.8968

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0
  • Datasets 2.2.1
  • Tokenizers 0.12.1
Downloads last month
9
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Dataset used to train enoriega/rule_learning_margin_3mm_many_negatives_spanpred_attention