Whisper Large v3 Fine-Tuned Finnish

This model is a fine-tuned version of openai/whisper-large-v3 on the Common Voice 13.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2128
  • Wer: 19.4828

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 800
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6193 0.21 50 0.2905 29.1920
0.3515 0.42 100 0.3581 32.2014
0.3433 0.63 150 0.3497 43.9812
0.3196 0.84 200 0.3080 27.9956
0.2597 1.05 250 0.3213 27.5630
0.1368 1.26 300 0.3088 29.0263
0.1316 1.47 350 0.3018 27.0569
0.1193 1.68 400 0.2948 28.5846
0.1219 1.89 450 0.2608 25.1979
0.0738 2.11 500 0.2645 30.9682
0.042 2.32 550 0.2493 23.2008
0.0406 2.53 600 0.2589 21.6823
0.0317 2.74 650 0.2391 24.9862
0.0336 2.95 700 0.2217 21.6639
0.0127 3.16 750 0.2126 20.3939
0.0085 3.37 800 0.2128 19.4828

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.0.1
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
7
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for enakilci/whisper-large-v3-fi-800steps-8batch-2grad_steps-5e-05lr

Finetuned
(373)
this model

Dataset used to train enakilci/whisper-large-v3-fi-800steps-8batch-2grad_steps-5e-05lr

Evaluation results