convbert-base-turkish-mc4-cased_allnli_tr

This model is a fine-tuned version of dbmdz/convbert-base-turkish-mc4-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5541
  • Accuracy: 0.8111

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7338 0.03 1000 0.6722 0.7236
0.603 0.07 2000 0.6465 0.7399
0.5605 0.1 3000 0.5801 0.7728
0.55 0.14 4000 0.5994 0.7626
0.529 0.17 5000 0.5720 0.7697
0.5196 0.2 6000 0.5692 0.7769
0.5117 0.24 7000 0.5725 0.7785
0.5044 0.27 8000 0.5532 0.7787
0.5016 0.31 9000 0.5546 0.7812
0.5031 0.34 10000 0.5461 0.7870
0.4949 0.37 11000 0.5725 0.7826
0.4894 0.41 12000 0.5419 0.7933
0.4796 0.44 13000 0.5278 0.7914
0.4795 0.48 14000 0.5193 0.7953
0.4713 0.51 15000 0.5534 0.7771
0.4738 0.54 16000 0.5098 0.8039
0.481 0.58 17000 0.5244 0.7958
0.4634 0.61 18000 0.5215 0.7972
0.465 0.65 19000 0.5129 0.7985
0.4624 0.68 20000 0.5062 0.8047
0.4597 0.71 21000 0.5114 0.8029
0.4571 0.75 22000 0.5070 0.8073
0.4602 0.78 23000 0.5115 0.7993
0.4552 0.82 24000 0.5085 0.8052
0.4538 0.85 25000 0.5118 0.7974
0.4517 0.88 26000 0.5036 0.8044
0.4517 0.92 27000 0.4930 0.8062
0.4413 0.95 28000 0.5307 0.7964
0.4483 0.99 29000 0.5195 0.7938
0.4036 1.02 30000 0.5238 0.8029
0.3724 1.05 31000 0.5125 0.8082
0.3777 1.09 32000 0.5099 0.8075
0.3753 1.12 33000 0.5172 0.8053
0.367 1.15 34000 0.5188 0.8053
0.3819 1.19 35000 0.5218 0.8046
0.363 1.22 36000 0.5202 0.7993
0.3794 1.26 37000 0.5240 0.8048
0.3749 1.29 38000 0.5026 0.8054
0.367 1.32 39000 0.5198 0.8075
0.3759 1.36 40000 0.5298 0.7993
0.3701 1.39 41000 0.5072 0.8091
0.3742 1.43 42000 0.5071 0.8098
0.3706 1.46 43000 0.5317 0.8037
0.3716 1.49 44000 0.5034 0.8052
0.3717 1.53 45000 0.5258 0.8012
0.3714 1.56 46000 0.5195 0.8050
0.3781 1.6 47000 0.5004 0.8104
0.3725 1.63 48000 0.5124 0.8113
0.3624 1.66 49000 0.5040 0.8094
0.3657 1.7 50000 0.4979 0.8111
0.3669 1.73 51000 0.4968 0.8100
0.3636 1.77 52000 0.5075 0.8079
0.36 1.8 53000 0.4985 0.8110
0.3624 1.83 54000 0.5125 0.8070
0.366 1.87 55000 0.4918 0.8117
0.3655 1.9 56000 0.5051 0.8109
0.3609 1.94 57000 0.5083 0.8105
0.3672 1.97 58000 0.5129 0.8085
0.3545 2.0 59000 0.5467 0.8109
0.2938 2.04 60000 0.5635 0.8049
0.29 2.07 61000 0.5781 0.8041
0.2992 2.11 62000 0.5470 0.8077
0.2957 2.14 63000 0.5765 0.8073
0.292 2.17 64000 0.5472 0.8106
0.2893 2.21 65000 0.5590 0.8085
0.2883 2.24 66000 0.5535 0.8064
0.2923 2.28 67000 0.5508 0.8095
0.2868 2.31 68000 0.5679 0.8098
0.2892 2.34 69000 0.5660 0.8057
0.292 2.38 70000 0.5494 0.8088
0.286 2.41 71000 0.5653 0.8085
0.2939 2.45 72000 0.5673 0.8070
0.286 2.48 73000 0.5600 0.8092
0.2844 2.51 74000 0.5508 0.8095
0.2913 2.55 75000 0.5645 0.8088
0.2859 2.58 76000 0.5677 0.8095
0.2892 2.62 77000 0.5598 0.8113
0.2898 2.65 78000 0.5618 0.8096
0.2814 2.68 79000 0.5664 0.8103
0.2917 2.72 80000 0.5484 0.8122
0.2907 2.75 81000 0.5522 0.8116
0.2896 2.79 82000 0.5540 0.8093
0.2907 2.82 83000 0.5469 0.8104
0.2882 2.85 84000 0.5471 0.8122
0.2878 2.89 85000 0.5532 0.8108
0.2858 2.92 86000 0.5511 0.8115
0.288 2.96 87000 0.5491 0.8111
0.2834 2.99 88000 0.5541 0.8111

Framework versions

  • Transformers 4.12.3
  • Pytorch 1.10.0+cu102
  • Datasets 1.15.1
  • Tokenizers 0.10.3
Downloads last month
6
Hosted inference API
Zero-Shot Classification
Examples
Examples
This model can be loaded on the Inference API on-demand.

Dataset used to train emrecan/convbert-base-turkish-mc4-cased-allnli_tr