File size: 23,732 Bytes
27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea b9eb078 27d2cea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 |
"""Attention layers."""
import math
import warnings
from typing import Optional, Dict, Any, NamedTuple, Protocol, Tuple, Union
import torch
import torch.nn as nn
from einops import rearrange
from packaging import version
from torch import nn
from torch.utils.checkpoint import checkpoint
from .norm import LPLayerNorm
from .is_torch_version import is_torch_version
class PastKeyValue(NamedTuple):
key: torch.Tensor
value: torch.Tensor
class AttnFnOutput(NamedTuple):
attns: torch.Tensor
attn_probs: Optional[torch.Tensor]
class AttnFn(Protocol):
def __call__(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
n_heads: int,
softmax_scale: Optional[float] = None,
attn_bias: Optional[torch.Tensor] = None,
key_padding_mask: Optional[torch.ByteTensor] = None,
is_causal = False,
dropout_p = 0.0,
training = False,
needs_weights = False,
multiquery = False,
) -> AttnFnOutput: ...
class AttnFnCheckpointed(Protocol):
def __call__(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
n_heads: int,
softmax_scale: Optional[float],
attn_bias: Optional[torch.Tensor],
key_padding_mask: Optional[torch.ByteTensor],
is_causal: bool,
dropout_p: float,
training: bool,
needs_weights: bool,
) -> AttnFnOutput: ...
class AttnOutput(NamedTuple):
projected_context: torch.Tensor
attn_weights: Optional[torch.Tensor]
past_key_value: Union[PastKeyValue, Tuple, None]
class Attn(Protocol):
def __call__(
self,
x: torch.Tensor,
past_key_value: Union[PastKeyValue, Tuple, None] = None,
attn_bias: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.ByteTensor] = None,
is_causal = True,
needs_weights = False,
) -> AttnOutput: ...
def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool):
if original_is_causal and num_query_tokens != num_key_tokens:
if num_query_tokens != 1:
raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.')
else:
return False
return original_is_causal
def scaled_multihead_dot_product_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
n_heads: int,
softmax_scale: Optional[float] = None,
attn_bias: Optional[torch.Tensor] = None,
key_padding_mask: Optional[torch.ByteTensor] = None,
is_causal = False,
dropout_p = 0.0,
training = False,
needs_weights = False,
multiquery = False,
) -> AttnFnOutput:
q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
k = rearrange(key, 'b s (h d) -> b h d s', h=1 if multiquery else n_heads)
v = rearrange(value, 'b s (h d) -> b h s d', h=1 if multiquery else n_heads)
min_val = torch.finfo(q.dtype).min
(b, _, s_q, d) = q.shape
s_k = k.size(-1)
if softmax_scale is None:
softmax_scale = 1 / math.sqrt(d)
attn_weight = q.matmul(k) * softmax_scale
if attn_bias is not None:
if attn_bias.size(-1) != 1 and attn_bias.size(-1) != s_k or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q):
raise RuntimeError(f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.')
attn_weight = attn_weight + attn_bias
if key_padding_mask is not None:
if attn_bias is not None:
warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unneccessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val)
if is_causal:
s = max(s_q, s_k)
causal_mask = attn_weight.new_ones(s, s, dtype=torch.float16)
causal_mask = causal_mask.tril()
causal_mask = causal_mask.to(torch.bool)
causal_mask = ~causal_mask
causal_mask = causal_mask[-s_q:, -s_k:]
attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val)
attn_weight = torch.softmax(attn_weight, dim=-1)
if dropout_p:
attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True)
out = attn_weight.matmul(v)
out = rearrange(out, 'b h s d -> b s (h d)')
if needs_weights:
return AttnFnOutput(out, attn_weight)
return AttnFnOutput(out, None)
def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]):
for tensor in tensors:
if tensor.dtype not in valid_dtypes:
raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.')
if not tensor.is_cuda:
raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).')
def flash_attn_fn(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
n_heads: int,
softmax_scale: Optional[float] = None,
attn_bias: Optional[torch.Tensor] = None,
key_padding_mask: Optional[torch.ByteTensor] = None,
is_causal = False,
dropout_p = 0.0,
training = False,
needs_weights = False,
multiquery = False,
) -> AttnFnOutput:
try:
from flash_attn import bert_padding, flash_attn_interface
except:
raise RuntimeError('Please install flash-attn==1.0.3.post0')
check_valid_inputs(query, key, value)
if attn_bias is not None:
raise NotImplementedError(f'attn_bias not implemented for flash attn.')
(batch_size, seqlen) = query.shape[:2]
if key_padding_mask is None:
key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool)
query_padding_mask = key_padding_mask[:, -query.size(1):]
(query_unpad, indices_q, cu_seqlens_q, max_seqlen_q) = bert_padding.unpad_input(query, query_padding_mask)
query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
(key_unpad, _, cu_seqlens_k, max_seqlen_k) = bert_padding.unpad_input(key, key_padding_mask)
key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads)
(value_unpad, _, _, _) = bert_padding.unpad_input(value, key_padding_mask)
value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads)
if multiquery:
key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1))
value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1))
dropout_p = dropout_p if training else 0.0
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
output_unpad = flash_attn_interface.flash_attn_unpadded_func(query_unpad, key_unpad, value_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights)
output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen)
return AttnFnOutput(output, None)
def triton_flash_attn_fn(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
n_heads: int,
softmax_scale: Optional[float] = None,
attn_bias: Optional[torch.Tensor] = None,
key_padding_mask: Optional[torch.ByteTensor] = None,
is_causal = False,
dropout_p = 0.0,
training = False,
needs_weights = False,
multiquery = False,
) -> AttnFnOutput:
try:
from .flash_attn_triton import flash_attn_func
except:
_installed = False
if version.parse(torch.__version__) < version.parse('2.0.0'):
_installed = True
try:
from flash_attn.flash_attn_triton import flash_attn_func
except:
_installed = False
if not _installed:
raise RuntimeError('Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU and `pip install .[gpu]` if installing from llm-foundry source or `pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). Note: (1) requires you have CMake and PyTorch already installed.')
check_valid_inputs(query, key, value)
if dropout_p:
raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.')
if needs_weights:
raise NotImplementedError(f'attn_impl: triton cannot return attn weights.')
if key_padding_mask is not None:
warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
(b_size, s_k) = key_padding_mask.shape[:2]
if attn_bias is None:
attn_bias = query.new_zeros(b_size, 1, 1, s_k)
attn_bias = attn_bias.masked_fill(~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min)
query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
key = rearrange(key, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads)
value = rearrange(value, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads)
if multiquery:
key = key.expand(*key.shape[:2], n_heads, key.size(-1))
value = value.expand(*value.shape[:2], n_heads, value.size(-1))
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale)
output = attn_output.view(*attn_output.shape[:2], -1)
return AttnFnOutput(output, None)
class MultiheadAttention(nn.Module, Attn):
"""Multi-head self attention.
Using torch or triton attention implemetation enables user to also use
additive bias.
"""
gradient_checkpointing = False
attn_fn: AttnFn
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, device: Optional[str]=None):
super().__init__()
self.attn_impl = attn_impl
self.clip_qkv = clip_qkv
self.qk_ln = qk_ln
self.d_model = d_model
self.n_heads = n_heads
self.softmax_scale = softmax_scale
if self.softmax_scale is None:
self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
self.attn_dropout_p = attn_pdrop
self.Wqkv = nn.Linear(self.d_model, 3 * self.d_model, device=device)
fuse_splits = (d_model, 2 * d_model)
self.Wqkv._fused = (0, fuse_splits)
if self.qk_ln:
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
self.q_ln = layernorm_class(self.d_model, device=device)
self.k_ln = layernorm_class(self.d_model, device=device)
if self.attn_impl == 'flash':
self.attn_fn = flash_attn_fn
elif self.attn_impl == 'triton':
self.attn_fn = triton_flash_attn_fn
warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
elif self.attn_impl == 'torch':
self.attn_fn = scaled_multihead_dot_product_attention
if torch.cuda.is_available():
warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.')
else:
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
self.out_proj._is_residual = True
def forward(
self,
x: torch.Tensor,
past_key_value: Union[PastKeyValue, Tuple, None] = None,
attn_bias: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.ByteTensor] = None,
is_causal = True,
needs_weights = False,
) -> AttnOutput:
qkv = self.Wqkv(x)
if self.clip_qkv:
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
(query, key, value) = qkv.chunk(3, dim=2)
key_padding_mask = attention_mask
if self.qk_ln:
dtype = query.dtype
query = self.q_ln(query).to(dtype)
key = self.k_ln(key).to(dtype)
if past_key_value is not None:
if len(past_key_value) != 0:
key = torch.cat([past_key_value[0], key], dim=1)
value = torch.cat([past_key_value[1], value], dim=1)
past_key_value = PastKeyValue(key, value)
if attn_bias is not None:
attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):]
if self.training and self.gradient_checkpointing:
ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {}
def create_custom_forward(attn_fn: AttnFn) -> AttnFnCheckpointed:
def custom_forward(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
n_heads: int,
softmax_scale: Optional[float],
attn_bias: Optional[torch.Tensor],
key_padding_mask: Optional[torch.ByteTensor],
is_causal: bool,
dropout_p: float,
training: bool,
needs_weights: bool,
):
return attn_fn(
query,
key,
value,
n_heads,
softmax_scale,
attn_bias,
key_padding_mask,
is_causal,
dropout_p,
training,
needs_weights,
False, # multiquery
)
return custom_forward
attn_fn_out: AttnFnOutput = checkpoint(
create_custom_forward(self.attn_fn),
query,
key,
value,
self.n_heads,
self.softmax_scale,
attn_bias,
key_padding_mask,
is_causal,
self.attn_dropout_p,
self.training,
needs_weights,
**ckpt_kwargs,
)
else:
attn_fn_out: AttnFnOutput = self.attn_fn(
query,
key,
value,
self.n_heads,
softmax_scale=self.softmax_scale,
attn_bias=attn_bias,
key_padding_mask=key_padding_mask,
is_causal=is_causal,
dropout_p=self.attn_dropout_p,
training=self.training,
needs_weights=needs_weights,
)
context, attn_weights = attn_fn_out
return AttnOutput(self.out_proj(context), attn_weights, past_key_value)
class MultiQueryAttention(nn.Module, Attn):
"""Multi-Query self attention.
Using torch or triton attention implemetation enables user to also use
additive bias.
"""
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, device: Optional[str]=None):
super().__init__()
self.attn_impl = attn_impl
self.clip_qkv = clip_qkv
self.qk_ln = qk_ln
self.d_model = d_model
self.n_heads = n_heads
self.head_dim = d_model // n_heads
self.softmax_scale = softmax_scale
if self.softmax_scale is None:
self.softmax_scale = 1 / math.sqrt(self.head_dim)
self.attn_dropout_p = attn_pdrop
self.Wqkv = nn.Linear(d_model, d_model + 2 * self.head_dim, device=device)
fuse_splits = (d_model, d_model + self.head_dim)
self.Wqkv._fused = (0, fuse_splits)
if self.qk_ln:
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
self.q_ln = layernorm_class(d_model, device=device)
self.k_ln = layernorm_class(self.head_dim, device=device)
if self.attn_impl == 'flash':
self.attn_fn = flash_attn_fn
elif self.attn_impl == 'triton':
self.attn_fn = triton_flash_attn_fn
warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
elif self.attn_impl == 'torch':
self.attn_fn = scaled_multihead_dot_product_attention
if torch.cuda.is_available():
warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.')
else:
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
self.out_proj._is_residual = True
def forward(
self,
x: torch.Tensor,
past_key_value: Union[PastKeyValue, Tuple, None] = None,
attn_bias: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.ByteTensor] = None,
is_causal = True,
needs_weights = False,
) -> AttnOutput:
qkv = self.Wqkv(x)
if self.clip_qkv:
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
(query, key, value) = qkv.split([self.d_model, self.head_dim, self.head_dim], dim=2)
key_padding_mask = attention_mask
if self.qk_ln:
dtype = query.dtype
query = self.q_ln(query).to(dtype)
key = self.k_ln(key).to(dtype)
if past_key_value is not None:
if len(past_key_value) != 0:
key = torch.cat([past_key_value[0], key], dim=1)
value = torch.cat([past_key_value[1], value], dim=1)
past_key_value = PastKeyValue(key, value)
if attn_bias is not None:
attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):]
if self.training and self.gradient_checkpointing:
ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {}
def create_custom_forward(attn_fn: AttnFn) -> AttnFnCheckpointed:
def custom_forward(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
n_heads: int,
softmax_scale: Optional[float],
attn_bias: Optional[torch.Tensor],
key_padding_mask: Optional[torch.ByteTensor],
is_causal: bool,
dropout_p: float,
training: bool,
needs_weights: bool,
):
return attn_fn(
query,
key,
value,
n_heads,
softmax_scale,
attn_bias,
key_padding_mask,
is_causal,
dropout_p,
training,
needs_weights,
True, # multiquery
)
return custom_forward
attn_fn_out: AttnFnOutput = checkpoint(
create_custom_forward(self.attn_fn),
query,
key,
value,
self.n_heads,
self.softmax_scale,
attn_bias,
key_padding_mask,
is_causal,
self.attn_dropout_p,
self.training,
needs_weights,
**ckpt_kwargs,
)
else:
attn_fn_out: AttnFnOutput = self.attn_fn(
query,
key,
value,
self.n_heads,
softmax_scale=self.softmax_scale,
attn_bias=attn_bias,
key_padding_mask=key_padding_mask,
is_causal=is_causal,
dropout_p=self.attn_dropout_p,
training=self.training,
needs_weights=needs_weights,
)
context, attn_weights = attn_fn_out
return AttnOutput(self.out_proj(context), attn_weights, past_key_value)
def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_sequence_id):
if attn_impl == 'flash':
return None
elif attn_impl in ['torch', 'triton']:
if alibi:
if (prefix_lm or not causal) or use_sequence_id:
return (1, n_heads, seq_len, seq_len)
return (1, n_heads, 1, seq_len)
elif prefix_lm or use_sequence_id:
return (1, 1, seq_len, seq_len)
return None
else:
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
def build_attn_bias(attn_impl, attn_bias, n_heads, seq_len, causal=False, alibi=False, alibi_bias_max=8):
if attn_impl == 'flash':
return None
elif attn_impl in ['torch', 'triton']:
if alibi:
(device, dtype) = (attn_bias.device, attn_bias.dtype)
attn_bias = attn_bias.add(build_alibi_bias(n_heads, seq_len, full=not causal, alibi_bias_max=alibi_bias_max, device=device, dtype=dtype))
return attn_bias
else:
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
def gen_slopes(n_heads, alibi_bias_max=8, device=None):
_n_heads = 2 ** math.ceil(math.log2(n_heads))
m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
m = m.mul(alibi_bias_max / _n_heads)
slopes = 1.0 / torch.pow(2, m)
if _n_heads != n_heads:
slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
return slopes.view(1, n_heads, 1, 1)
def build_alibi_bias(n_heads, seq_len, full=False, alibi_bias_max=8, device=None, dtype=None):
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len)
if full:
alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, seq_len, 1)
alibi_bias = alibi_bias.abs().mul(-1)
slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
alibi_bias = alibi_bias * slopes
return alibi_bias.to(dtype=dtype)
ATTN_CLASS_REGISTRY = {'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention} |