add Birchlabs MPT changes
Browse files- attention.py +356 -115
- blocks.py +16 -12
- is_torch_version.py +56 -0
- modeling_mpt.py +154 -90
attention.py
CHANGED
@@ -1,131 +1,234 @@
|
|
1 |
-
|
2 |
-
'Attention layers.'
|
3 |
import math
|
4 |
import warnings
|
5 |
-
from typing import Optional
|
6 |
import torch
|
7 |
import torch.nn as nn
|
8 |
from einops import rearrange
|
9 |
from packaging import version
|
10 |
from torch import nn
|
|
|
11 |
from .norm import LPLayerNorm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool):
|
14 |
-
if
|
15 |
-
if
|
16 |
raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.')
|
17 |
else:
|
18 |
return False
|
19 |
return original_is_causal
|
20 |
|
21 |
-
def scaled_multihead_dot_product_attention(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
|
23 |
-
k = rearrange(key, 'b s (h d) -> b h d s', h=
|
24 |
-
v = rearrange(value, 'b s (h d) -> b h s d', h=
|
25 |
min_val = torch.finfo(q.dtype).min
|
26 |
(b, _, s_q, d) = q.shape
|
27 |
-
s_k = k.size(
|
28 |
-
if
|
29 |
-
softmax_scale =
|
30 |
-
attn_weight =
|
31 |
-
if
|
32 |
-
if
|
33 |
raise RuntimeError(f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.')
|
34 |
-
attn_weight =
|
35 |
-
if
|
36 |
-
if
|
37 |
-
warnings.warn(
|
38 |
-
attn_weight = attn_weight.masked_fill(
|
39 |
if is_causal:
|
40 |
s = max(s_q, s_k)
|
41 |
causal_mask = attn_weight.new_ones(s, s, dtype=torch.float16)
|
42 |
causal_mask = causal_mask.tril()
|
43 |
causal_mask = causal_mask.to(torch.bool)
|
44 |
-
causal_mask =
|
45 |
-
causal_mask = causal_mask[
|
46 |
attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val)
|
47 |
-
attn_weight = torch.softmax(attn_weight, dim
|
48 |
if dropout_p:
|
49 |
attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True)
|
50 |
out = attn_weight.matmul(v)
|
51 |
out = rearrange(out, 'b h s d -> b s (h d)')
|
52 |
if needs_weights:
|
53 |
-
return (out, attn_weight)
|
54 |
-
return (out, None)
|
55 |
|
56 |
def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]):
|
57 |
for tensor in tensors:
|
58 |
-
if
|
59 |
raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.')
|
60 |
-
if
|
61 |
raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).')
|
62 |
|
63 |
-
def flash_attn_fn(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
try:
|
65 |
from flash_attn import bert_padding, flash_attn_interface
|
66 |
except:
|
67 |
raise RuntimeError('Please install flash-attn==1.0.3.post0')
|
68 |
check_valid_inputs(query, key, value)
|
69 |
-
if
|
70 |
raise NotImplementedError(f'attn_bias not implemented for flash attn.')
|
71 |
(batch_size, seqlen) = query.shape[:2]
|
72 |
-
if
|
73 |
key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool)
|
74 |
-
query_padding_mask = key_padding_mask[:,
|
75 |
(query_unpad, indices_q, cu_seqlens_q, max_seqlen_q) = bert_padding.unpad_input(query, query_padding_mask)
|
76 |
query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
|
77 |
(key_unpad, _, cu_seqlens_k, max_seqlen_k) = bert_padding.unpad_input(key, key_padding_mask)
|
78 |
-
key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=
|
79 |
(value_unpad, _, _, _) = bert_padding.unpad_input(value, key_padding_mask)
|
80 |
-
value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=
|
81 |
if multiquery:
|
82 |
-
key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(
|
83 |
-
value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(
|
84 |
-
dropout_p =
|
85 |
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
86 |
output_unpad = flash_attn_interface.flash_attn_unpadded_func(query_unpad, key_unpad, value_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights)
|
87 |
output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen)
|
88 |
-
return (output, None)
|
89 |
|
90 |
-
def triton_flash_attn_fn(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
try:
|
92 |
from .flash_attn_triton import flash_attn_func
|
93 |
except:
|
94 |
_installed = False
|
95 |
-
if
|
96 |
_installed = True
|
97 |
try:
|
98 |
from flash_attn.flash_attn_triton import flash_attn_func
|
99 |
except:
|
100 |
_installed = False
|
101 |
-
if
|
102 |
raise RuntimeError('Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU and `pip install .[gpu]` if installing from llm-foundry source or `pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). Note: (1) requires you have CMake and PyTorch already installed.')
|
103 |
check_valid_inputs(query, key, value)
|
104 |
if dropout_p:
|
105 |
raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.')
|
106 |
if needs_weights:
|
107 |
raise NotImplementedError(f'attn_impl: triton cannot return attn weights.')
|
108 |
-
if
|
109 |
-
warnings.warn(
|
110 |
(b_size, s_k) = key_padding_mask.shape[:2]
|
111 |
-
if
|
112 |
attn_bias = query.new_zeros(b_size, 1, 1, s_k)
|
113 |
-
attn_bias = attn_bias.masked_fill(
|
114 |
query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
|
115 |
-
key = rearrange(key, 'b s (h d) -> b s h d', h=
|
116 |
-
value = rearrange(value, 'b s (h d) -> b s h d', h=
|
117 |
if multiquery:
|
118 |
-
key = key.expand(*key.shape[:2], n_heads, key.size(
|
119 |
-
value = value.expand(*value.shape[:2], n_heads, value.size(
|
120 |
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
121 |
attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale)
|
122 |
-
output = attn_output.view(*attn_output.shape[:2],
|
123 |
-
return (output, None)
|
|
|
|
|
|
|
124 |
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
127 |
|
128 |
-
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False,
|
129 |
super().__init__()
|
130 |
self.attn_impl = attn_impl
|
131 |
self.clip_qkv = clip_qkv
|
@@ -133,148 +236,286 @@ class MultiheadAttention(nn.Module):
|
|
133 |
self.d_model = d_model
|
134 |
self.n_heads = n_heads
|
135 |
self.softmax_scale = softmax_scale
|
136 |
-
if
|
137 |
-
self.softmax_scale =
|
138 |
self.attn_dropout_p = attn_pdrop
|
139 |
-
self.Wqkv = nn.Linear(self.d_model,
|
140 |
-
fuse_splits = (d_model,
|
141 |
self.Wqkv._fused = (0, fuse_splits)
|
142 |
if self.qk_ln:
|
143 |
-
layernorm_class =
|
144 |
self.q_ln = layernorm_class(self.d_model, device=device)
|
145 |
self.k_ln = layernorm_class(self.d_model, device=device)
|
146 |
-
if
|
147 |
self.attn_fn = flash_attn_fn
|
148 |
-
elif
|
149 |
self.attn_fn = triton_flash_attn_fn
|
150 |
-
if
|
151 |
-
|
152 |
-
elif (self.attn_impl == 'torch'):
|
153 |
self.attn_fn = scaled_multihead_dot_product_attention
|
154 |
-
if
|
155 |
-
warnings.warn(
|
156 |
else:
|
157 |
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
158 |
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
|
159 |
self.out_proj._is_residual = True
|
160 |
|
161 |
-
def forward(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
qkv = self.Wqkv(x)
|
163 |
if self.clip_qkv:
|
164 |
-
qkv.clamp_(min
|
165 |
(query, key, value) = qkv.chunk(3, dim=2)
|
166 |
key_padding_mask = attention_mask
|
167 |
if self.qk_ln:
|
168 |
dtype = query.dtype
|
169 |
query = self.q_ln(query).to(dtype)
|
170 |
key = self.k_ln(key).to(dtype)
|
171 |
-
if
|
172 |
-
if
|
173 |
key = torch.cat([past_key_value[0], key], dim=1)
|
174 |
value = torch.cat([past_key_value[1], value], dim=1)
|
175 |
-
past_key_value = (key, value)
|
176 |
-
if
|
177 |
-
attn_bias = attn_bias[:, :,
|
178 |
-
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
-
class MultiQueryAttention(nn.Module):
|
182 |
-
|
183 |
|
184 |
-
|
|
|
|
|
|
|
|
|
185 |
super().__init__()
|
186 |
self.attn_impl = attn_impl
|
187 |
self.clip_qkv = clip_qkv
|
188 |
self.qk_ln = qk_ln
|
189 |
self.d_model = d_model
|
190 |
self.n_heads = n_heads
|
191 |
-
self.head_dim =
|
192 |
self.softmax_scale = softmax_scale
|
193 |
-
if
|
194 |
-
self.softmax_scale =
|
195 |
self.attn_dropout_p = attn_pdrop
|
196 |
-
self.Wqkv = nn.Linear(d_model,
|
197 |
-
fuse_splits = (d_model,
|
198 |
self.Wqkv._fused = (0, fuse_splits)
|
199 |
if self.qk_ln:
|
200 |
-
layernorm_class =
|
201 |
self.q_ln = layernorm_class(d_model, device=device)
|
202 |
self.k_ln = layernorm_class(self.head_dim, device=device)
|
203 |
-
if
|
204 |
self.attn_fn = flash_attn_fn
|
205 |
-
elif
|
206 |
self.attn_fn = triton_flash_attn_fn
|
207 |
-
if
|
208 |
-
|
209 |
-
elif (self.attn_impl == 'torch'):
|
210 |
self.attn_fn = scaled_multihead_dot_product_attention
|
211 |
-
if
|
212 |
-
warnings.warn(
|
213 |
else:
|
214 |
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
215 |
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
|
216 |
self.out_proj._is_residual = True
|
217 |
|
218 |
-
def forward(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
qkv = self.Wqkv(x)
|
220 |
if self.clip_qkv:
|
221 |
-
qkv.clamp_(min
|
222 |
(query, key, value) = qkv.split([self.d_model, self.head_dim, self.head_dim], dim=2)
|
223 |
key_padding_mask = attention_mask
|
224 |
if self.qk_ln:
|
225 |
dtype = query.dtype
|
226 |
query = self.q_ln(query).to(dtype)
|
227 |
key = self.k_ln(key).to(dtype)
|
228 |
-
if
|
229 |
-
if
|
230 |
key = torch.cat([past_key_value[0], key], dim=1)
|
231 |
value = torch.cat([past_key_value[1], value], dim=1)
|
232 |
-
past_key_value = (key, value)
|
233 |
-
if
|
234 |
-
attn_bias = attn_bias[:, :,
|
235 |
-
|
236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_sequence_id):
|
239 |
-
if
|
240 |
return None
|
241 |
-
elif
|
242 |
if alibi:
|
243 |
-
if (
|
244 |
return (1, n_heads, seq_len, seq_len)
|
245 |
return (1, n_heads, 1, seq_len)
|
246 |
-
elif
|
247 |
return (1, 1, seq_len, seq_len)
|
248 |
return None
|
249 |
else:
|
250 |
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
251 |
|
252 |
def build_attn_bias(attn_impl, attn_bias, n_heads, seq_len, causal=False, alibi=False, alibi_bias_max=8):
|
253 |
-
if
|
254 |
return None
|
255 |
-
elif
|
256 |
if alibi:
|
257 |
(device, dtype) = (attn_bias.device, attn_bias.dtype)
|
258 |
-
attn_bias = attn_bias.add(build_alibi_bias(n_heads, seq_len, full=
|
259 |
return attn_bias
|
260 |
else:
|
261 |
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
262 |
|
263 |
def gen_slopes(n_heads, alibi_bias_max=8, device=None):
|
264 |
-
_n_heads =
|
265 |
-
m = torch.arange(1,
|
266 |
-
m = m.mul(
|
267 |
-
slopes =
|
268 |
-
if
|
269 |
slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
|
270 |
return slopes.view(1, n_heads, 1, 1)
|
271 |
|
272 |
def build_alibi_bias(n_heads, seq_len, full=False, alibi_bias_max=8, device=None, dtype=None):
|
273 |
-
alibi_bias = torch.arange(
|
274 |
if full:
|
275 |
-
alibi_bias =
|
276 |
-
alibi_bias = alibi_bias.abs().mul(
|
277 |
slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
|
278 |
-
alibi_bias =
|
279 |
return alibi_bias.to(dtype=dtype)
|
280 |
-
ATTN_CLASS_REGISTRY = {'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention}
|
|
|
1 |
+
"""Attention layers."""
|
|
|
2 |
import math
|
3 |
import warnings
|
4 |
+
from typing import Optional, Dict, Any, NamedTuple, Protocol, Tuple, Union
|
5 |
import torch
|
6 |
import torch.nn as nn
|
7 |
from einops import rearrange
|
8 |
from packaging import version
|
9 |
from torch import nn
|
10 |
+
from torch.utils.checkpoint import checkpoint
|
11 |
from .norm import LPLayerNorm
|
12 |
+
from .is_torch_version import is_torch_version
|
13 |
+
|
14 |
+
class PastKeyValue(NamedTuple):
|
15 |
+
key: torch.Tensor
|
16 |
+
value: torch.Tensor
|
17 |
+
|
18 |
+
class AttnFnOutput(NamedTuple):
|
19 |
+
attns: torch.Tensor
|
20 |
+
attn_probs: Optional[torch.Tensor]
|
21 |
+
|
22 |
+
class AttnFn(Protocol):
|
23 |
+
def __call__(
|
24 |
+
self,
|
25 |
+
query: torch.Tensor,
|
26 |
+
key: torch.Tensor,
|
27 |
+
value: torch.Tensor,
|
28 |
+
n_heads: int,
|
29 |
+
softmax_scale: Optional[float] = None,
|
30 |
+
attn_bias: Optional[torch.Tensor] = None,
|
31 |
+
key_padding_mask: Optional[torch.ByteTensor] = None,
|
32 |
+
is_causal = False,
|
33 |
+
dropout_p = 0.0,
|
34 |
+
training = False,
|
35 |
+
needs_weights = False,
|
36 |
+
multiquery = False,
|
37 |
+
) -> AttnFnOutput: ...
|
38 |
+
|
39 |
+
class AttnFnCheckpointed(Protocol):
|
40 |
+
def __call__(
|
41 |
+
self,
|
42 |
+
query: torch.Tensor,
|
43 |
+
key: torch.Tensor,
|
44 |
+
value: torch.Tensor,
|
45 |
+
n_heads: int,
|
46 |
+
softmax_scale: Optional[float],
|
47 |
+
attn_bias: Optional[torch.Tensor],
|
48 |
+
key_padding_mask: Optional[torch.ByteTensor],
|
49 |
+
is_causal: bool,
|
50 |
+
dropout_p: float,
|
51 |
+
training: bool,
|
52 |
+
needs_weights: bool,
|
53 |
+
) -> AttnFnOutput: ...
|
54 |
+
|
55 |
+
class AttnOutput(NamedTuple):
|
56 |
+
projected_context: torch.Tensor
|
57 |
+
attn_weights: Optional[torch.Tensor]
|
58 |
+
past_key_value: Union[PastKeyValue, Tuple, None]
|
59 |
+
|
60 |
+
class Attn(Protocol):
|
61 |
+
def __call__(
|
62 |
+
self,
|
63 |
+
x: torch.Tensor,
|
64 |
+
past_key_value: Union[PastKeyValue, Tuple, None] = None,
|
65 |
+
attn_bias: Optional[torch.Tensor] = None,
|
66 |
+
attention_mask: Optional[torch.ByteTensor] = None,
|
67 |
+
is_causal = True,
|
68 |
+
needs_weights = False,
|
69 |
+
) -> AttnOutput: ...
|
70 |
|
71 |
def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool):
|
72 |
+
if original_is_causal and num_query_tokens != num_key_tokens:
|
73 |
+
if num_query_tokens != 1:
|
74 |
raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.')
|
75 |
else:
|
76 |
return False
|
77 |
return original_is_causal
|
78 |
|
79 |
+
def scaled_multihead_dot_product_attention(
|
80 |
+
query: torch.Tensor,
|
81 |
+
key: torch.Tensor,
|
82 |
+
value: torch.Tensor,
|
83 |
+
n_heads: int,
|
84 |
+
softmax_scale: Optional[float] = None,
|
85 |
+
attn_bias: Optional[torch.Tensor] = None,
|
86 |
+
key_padding_mask: Optional[torch.ByteTensor] = None,
|
87 |
+
is_causal = False,
|
88 |
+
dropout_p = 0.0,
|
89 |
+
training = False,
|
90 |
+
needs_weights = False,
|
91 |
+
multiquery = False,
|
92 |
+
) -> AttnFnOutput:
|
93 |
q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
|
94 |
+
k = rearrange(key, 'b s (h d) -> b h d s', h=1 if multiquery else n_heads)
|
95 |
+
v = rearrange(value, 'b s (h d) -> b h s d', h=1 if multiquery else n_heads)
|
96 |
min_val = torch.finfo(q.dtype).min
|
97 |
(b, _, s_q, d) = q.shape
|
98 |
+
s_k = k.size(-1)
|
99 |
+
if softmax_scale is None:
|
100 |
+
softmax_scale = 1 / math.sqrt(d)
|
101 |
+
attn_weight = q.matmul(k) * softmax_scale
|
102 |
+
if attn_bias is not None:
|
103 |
+
if attn_bias.size(-1) != 1 and attn_bias.size(-1) != s_k or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q):
|
104 |
raise RuntimeError(f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.')
|
105 |
+
attn_weight = attn_weight + attn_bias
|
106 |
+
if key_padding_mask is not None:
|
107 |
+
if attn_bias is not None:
|
108 |
+
warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unneccessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
|
109 |
+
attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val)
|
110 |
if is_causal:
|
111 |
s = max(s_q, s_k)
|
112 |
causal_mask = attn_weight.new_ones(s, s, dtype=torch.float16)
|
113 |
causal_mask = causal_mask.tril()
|
114 |
causal_mask = causal_mask.to(torch.bool)
|
115 |
+
causal_mask = ~causal_mask
|
116 |
+
causal_mask = causal_mask[-s_q:, -s_k:]
|
117 |
attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val)
|
118 |
+
attn_weight = torch.softmax(attn_weight, dim=-1)
|
119 |
if dropout_p:
|
120 |
attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True)
|
121 |
out = attn_weight.matmul(v)
|
122 |
out = rearrange(out, 'b h s d -> b s (h d)')
|
123 |
if needs_weights:
|
124 |
+
return AttnFnOutput(out, attn_weight)
|
125 |
+
return AttnFnOutput(out, None)
|
126 |
|
127 |
def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]):
|
128 |
for tensor in tensors:
|
129 |
+
if tensor.dtype not in valid_dtypes:
|
130 |
raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.')
|
131 |
+
if not tensor.is_cuda:
|
132 |
raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).')
|
133 |
|
134 |
+
def flash_attn_fn(
|
135 |
+
query: torch.Tensor,
|
136 |
+
key: torch.Tensor,
|
137 |
+
value: torch.Tensor,
|
138 |
+
n_heads: int,
|
139 |
+
softmax_scale: Optional[float] = None,
|
140 |
+
attn_bias: Optional[torch.Tensor] = None,
|
141 |
+
key_padding_mask: Optional[torch.ByteTensor] = None,
|
142 |
+
is_causal = False,
|
143 |
+
dropout_p = 0.0,
|
144 |
+
training = False,
|
145 |
+
needs_weights = False,
|
146 |
+
multiquery = False,
|
147 |
+
) -> AttnFnOutput:
|
148 |
try:
|
149 |
from flash_attn import bert_padding, flash_attn_interface
|
150 |
except:
|
151 |
raise RuntimeError('Please install flash-attn==1.0.3.post0')
|
152 |
check_valid_inputs(query, key, value)
|
153 |
+
if attn_bias is not None:
|
154 |
raise NotImplementedError(f'attn_bias not implemented for flash attn.')
|
155 |
(batch_size, seqlen) = query.shape[:2]
|
156 |
+
if key_padding_mask is None:
|
157 |
key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool)
|
158 |
+
query_padding_mask = key_padding_mask[:, -query.size(1):]
|
159 |
(query_unpad, indices_q, cu_seqlens_q, max_seqlen_q) = bert_padding.unpad_input(query, query_padding_mask)
|
160 |
query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
|
161 |
(key_unpad, _, cu_seqlens_k, max_seqlen_k) = bert_padding.unpad_input(key, key_padding_mask)
|
162 |
+
key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads)
|
163 |
(value_unpad, _, _, _) = bert_padding.unpad_input(value, key_padding_mask)
|
164 |
+
value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads)
|
165 |
if multiquery:
|
166 |
+
key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1))
|
167 |
+
value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1))
|
168 |
+
dropout_p = dropout_p if training else 0.0
|
169 |
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
170 |
output_unpad = flash_attn_interface.flash_attn_unpadded_func(query_unpad, key_unpad, value_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights)
|
171 |
output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen)
|
172 |
+
return AttnFnOutput(output, None)
|
173 |
|
174 |
+
def triton_flash_attn_fn(
|
175 |
+
query: torch.Tensor,
|
176 |
+
key: torch.Tensor,
|
177 |
+
value: torch.Tensor,
|
178 |
+
n_heads: int,
|
179 |
+
softmax_scale: Optional[float] = None,
|
180 |
+
attn_bias: Optional[torch.Tensor] = None,
|
181 |
+
key_padding_mask: Optional[torch.ByteTensor] = None,
|
182 |
+
is_causal = False,
|
183 |
+
dropout_p = 0.0,
|
184 |
+
training = False,
|
185 |
+
needs_weights = False,
|
186 |
+
multiquery = False,
|
187 |
+
) -> AttnFnOutput:
|
188 |
try:
|
189 |
from .flash_attn_triton import flash_attn_func
|
190 |
except:
|
191 |
_installed = False
|
192 |
+
if version.parse(torch.__version__) < version.parse('2.0.0'):
|
193 |
_installed = True
|
194 |
try:
|
195 |
from flash_attn.flash_attn_triton import flash_attn_func
|
196 |
except:
|
197 |
_installed = False
|
198 |
+
if not _installed:
|
199 |
raise RuntimeError('Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU and `pip install .[gpu]` if installing from llm-foundry source or `pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). Note: (1) requires you have CMake and PyTorch already installed.')
|
200 |
check_valid_inputs(query, key, value)
|
201 |
if dropout_p:
|
202 |
raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.')
|
203 |
if needs_weights:
|
204 |
raise NotImplementedError(f'attn_impl: triton cannot return attn weights.')
|
205 |
+
if key_padding_mask is not None:
|
206 |
+
warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
|
207 |
(b_size, s_k) = key_padding_mask.shape[:2]
|
208 |
+
if attn_bias is None:
|
209 |
attn_bias = query.new_zeros(b_size, 1, 1, s_k)
|
210 |
+
attn_bias = attn_bias.masked_fill(~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min)
|
211 |
query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
|
212 |
+
key = rearrange(key, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads)
|
213 |
+
value = rearrange(value, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads)
|
214 |
if multiquery:
|
215 |
+
key = key.expand(*key.shape[:2], n_heads, key.size(-1))
|
216 |
+
value = value.expand(*value.shape[:2], n_heads, value.size(-1))
|
217 |
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
218 |
attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale)
|
219 |
+
output = attn_output.view(*attn_output.shape[:2], -1)
|
220 |
+
return AttnFnOutput(output, None)
|
221 |
+
|
222 |
+
class MultiheadAttention(nn.Module, Attn):
|
223 |
+
"""Multi-head self attention.
|
224 |
|
225 |
+
Using torch or triton attention implemetation enables user to also use
|
226 |
+
additive bias.
|
227 |
+
"""
|
228 |
+
gradient_checkpointing = False
|
229 |
+
attn_fn: AttnFn
|
230 |
|
231 |
+
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, device: Optional[str]=None):
|
232 |
super().__init__()
|
233 |
self.attn_impl = attn_impl
|
234 |
self.clip_qkv = clip_qkv
|
|
|
236 |
self.d_model = d_model
|
237 |
self.n_heads = n_heads
|
238 |
self.softmax_scale = softmax_scale
|
239 |
+
if self.softmax_scale is None:
|
240 |
+
self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
|
241 |
self.attn_dropout_p = attn_pdrop
|
242 |
+
self.Wqkv = nn.Linear(self.d_model, 3 * self.d_model, device=device)
|
243 |
+
fuse_splits = (d_model, 2 * d_model)
|
244 |
self.Wqkv._fused = (0, fuse_splits)
|
245 |
if self.qk_ln:
|
246 |
+
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
|
247 |
self.q_ln = layernorm_class(self.d_model, device=device)
|
248 |
self.k_ln = layernorm_class(self.d_model, device=device)
|
249 |
+
if self.attn_impl == 'flash':
|
250 |
self.attn_fn = flash_attn_fn
|
251 |
+
elif self.attn_impl == 'triton':
|
252 |
self.attn_fn = triton_flash_attn_fn
|
253 |
+
warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
|
254 |
+
elif self.attn_impl == 'torch':
|
|
|
255 |
self.attn_fn = scaled_multihead_dot_product_attention
|
256 |
+
if torch.cuda.is_available():
|
257 |
+
warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.')
|
258 |
else:
|
259 |
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
260 |
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
|
261 |
self.out_proj._is_residual = True
|
262 |
|
263 |
+
def forward(
|
264 |
+
self,
|
265 |
+
x: torch.Tensor,
|
266 |
+
past_key_value: Union[PastKeyValue, Tuple, None] = None,
|
267 |
+
attn_bias: Optional[torch.Tensor] = None,
|
268 |
+
attention_mask: Optional[torch.ByteTensor] = None,
|
269 |
+
is_causal = True,
|
270 |
+
needs_weights = False,
|
271 |
+
) -> AttnOutput:
|
272 |
qkv = self.Wqkv(x)
|
273 |
if self.clip_qkv:
|
274 |
+
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
275 |
(query, key, value) = qkv.chunk(3, dim=2)
|
276 |
key_padding_mask = attention_mask
|
277 |
if self.qk_ln:
|
278 |
dtype = query.dtype
|
279 |
query = self.q_ln(query).to(dtype)
|
280 |
key = self.k_ln(key).to(dtype)
|
281 |
+
if past_key_value is not None:
|
282 |
+
if len(past_key_value) != 0:
|
283 |
key = torch.cat([past_key_value[0], key], dim=1)
|
284 |
value = torch.cat([past_key_value[1], value], dim=1)
|
285 |
+
past_key_value = PastKeyValue(key, value)
|
286 |
+
if attn_bias is not None:
|
287 |
+
attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):]
|
288 |
+
if self.training and self.gradient_checkpointing:
|
289 |
+
ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {}
|
290 |
+
def create_custom_forward(attn_fn: AttnFn) -> AttnFnCheckpointed:
|
291 |
+
def custom_forward(
|
292 |
+
query: torch.Tensor,
|
293 |
+
key: torch.Tensor,
|
294 |
+
value: torch.Tensor,
|
295 |
+
n_heads: int,
|
296 |
+
softmax_scale: Optional[float],
|
297 |
+
attn_bias: Optional[torch.Tensor],
|
298 |
+
key_padding_mask: Optional[torch.ByteTensor],
|
299 |
+
is_causal: bool,
|
300 |
+
dropout_p: float,
|
301 |
+
training: bool,
|
302 |
+
needs_weights: bool,
|
303 |
+
):
|
304 |
+
return attn_fn(
|
305 |
+
query,
|
306 |
+
key,
|
307 |
+
value,
|
308 |
+
n_heads,
|
309 |
+
softmax_scale,
|
310 |
+
attn_bias,
|
311 |
+
key_padding_mask,
|
312 |
+
is_causal,
|
313 |
+
dropout_p,
|
314 |
+
training,
|
315 |
+
needs_weights,
|
316 |
+
False, # multiquery
|
317 |
+
)
|
318 |
+
return custom_forward
|
319 |
+
attn_fn_out: AttnFnOutput = checkpoint(
|
320 |
+
create_custom_forward(self.attn_fn),
|
321 |
+
query,
|
322 |
+
key,
|
323 |
+
value,
|
324 |
+
self.n_heads,
|
325 |
+
self.softmax_scale,
|
326 |
+
attn_bias,
|
327 |
+
key_padding_mask,
|
328 |
+
is_causal,
|
329 |
+
self.attn_dropout_p,
|
330 |
+
self.training,
|
331 |
+
needs_weights,
|
332 |
+
**ckpt_kwargs,
|
333 |
+
)
|
334 |
+
else:
|
335 |
+
attn_fn_out: AttnFnOutput = self.attn_fn(
|
336 |
+
query,
|
337 |
+
key,
|
338 |
+
value,
|
339 |
+
self.n_heads,
|
340 |
+
softmax_scale=self.softmax_scale,
|
341 |
+
attn_bias=attn_bias,
|
342 |
+
key_padding_mask=key_padding_mask,
|
343 |
+
is_causal=is_causal,
|
344 |
+
dropout_p=self.attn_dropout_p,
|
345 |
+
training=self.training,
|
346 |
+
needs_weights=needs_weights,
|
347 |
+
)
|
348 |
+
context, attn_weights = attn_fn_out
|
349 |
+
return AttnOutput(self.out_proj(context), attn_weights, past_key_value)
|
350 |
|
351 |
+
class MultiQueryAttention(nn.Module, Attn):
|
352 |
+
"""Multi-Query self attention.
|
353 |
|
354 |
+
Using torch or triton attention implemetation enables user to also use
|
355 |
+
additive bias.
|
356 |
+
"""
|
357 |
+
|
358 |
+
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, device: Optional[str]=None):
|
359 |
super().__init__()
|
360 |
self.attn_impl = attn_impl
|
361 |
self.clip_qkv = clip_qkv
|
362 |
self.qk_ln = qk_ln
|
363 |
self.d_model = d_model
|
364 |
self.n_heads = n_heads
|
365 |
+
self.head_dim = d_model // n_heads
|
366 |
self.softmax_scale = softmax_scale
|
367 |
+
if self.softmax_scale is None:
|
368 |
+
self.softmax_scale = 1 / math.sqrt(self.head_dim)
|
369 |
self.attn_dropout_p = attn_pdrop
|
370 |
+
self.Wqkv = nn.Linear(d_model, d_model + 2 * self.head_dim, device=device)
|
371 |
+
fuse_splits = (d_model, d_model + self.head_dim)
|
372 |
self.Wqkv._fused = (0, fuse_splits)
|
373 |
if self.qk_ln:
|
374 |
+
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
|
375 |
self.q_ln = layernorm_class(d_model, device=device)
|
376 |
self.k_ln = layernorm_class(self.head_dim, device=device)
|
377 |
+
if self.attn_impl == 'flash':
|
378 |
self.attn_fn = flash_attn_fn
|
379 |
+
elif self.attn_impl == 'triton':
|
380 |
self.attn_fn = triton_flash_attn_fn
|
381 |
+
warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
|
382 |
+
elif self.attn_impl == 'torch':
|
|
|
383 |
self.attn_fn = scaled_multihead_dot_product_attention
|
384 |
+
if torch.cuda.is_available():
|
385 |
+
warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.')
|
386 |
else:
|
387 |
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
388 |
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
|
389 |
self.out_proj._is_residual = True
|
390 |
|
391 |
+
def forward(
|
392 |
+
self,
|
393 |
+
x: torch.Tensor,
|
394 |
+
past_key_value: Union[PastKeyValue, Tuple, None] = None,
|
395 |
+
attn_bias: Optional[torch.Tensor] = None,
|
396 |
+
attention_mask: Optional[torch.ByteTensor] = None,
|
397 |
+
is_causal = True,
|
398 |
+
needs_weights = False,
|
399 |
+
) -> AttnOutput:
|
400 |
qkv = self.Wqkv(x)
|
401 |
if self.clip_qkv:
|
402 |
+
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
403 |
(query, key, value) = qkv.split([self.d_model, self.head_dim, self.head_dim], dim=2)
|
404 |
key_padding_mask = attention_mask
|
405 |
if self.qk_ln:
|
406 |
dtype = query.dtype
|
407 |
query = self.q_ln(query).to(dtype)
|
408 |
key = self.k_ln(key).to(dtype)
|
409 |
+
if past_key_value is not None:
|
410 |
+
if len(past_key_value) != 0:
|
411 |
key = torch.cat([past_key_value[0], key], dim=1)
|
412 |
value = torch.cat([past_key_value[1], value], dim=1)
|
413 |
+
past_key_value = PastKeyValue(key, value)
|
414 |
+
if attn_bias is not None:
|
415 |
+
attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):]
|
416 |
+
if self.training and self.gradient_checkpointing:
|
417 |
+
ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {}
|
418 |
+
def create_custom_forward(attn_fn: AttnFn) -> AttnFnCheckpointed:
|
419 |
+
def custom_forward(
|
420 |
+
query: torch.Tensor,
|
421 |
+
key: torch.Tensor,
|
422 |
+
value: torch.Tensor,
|
423 |
+
n_heads: int,
|
424 |
+
softmax_scale: Optional[float],
|
425 |
+
attn_bias: Optional[torch.Tensor],
|
426 |
+
key_padding_mask: Optional[torch.ByteTensor],
|
427 |
+
is_causal: bool,
|
428 |
+
dropout_p: float,
|
429 |
+
training: bool,
|
430 |
+
needs_weights: bool,
|
431 |
+
):
|
432 |
+
return attn_fn(
|
433 |
+
query,
|
434 |
+
key,
|
435 |
+
value,
|
436 |
+
n_heads,
|
437 |
+
softmax_scale,
|
438 |
+
attn_bias,
|
439 |
+
key_padding_mask,
|
440 |
+
is_causal,
|
441 |
+
dropout_p,
|
442 |
+
training,
|
443 |
+
needs_weights,
|
444 |
+
True, # multiquery
|
445 |
+
)
|
446 |
+
return custom_forward
|
447 |
+
attn_fn_out: AttnFnOutput = checkpoint(
|
448 |
+
create_custom_forward(self.attn_fn),
|
449 |
+
query,
|
450 |
+
key,
|
451 |
+
value,
|
452 |
+
self.n_heads,
|
453 |
+
self.softmax_scale,
|
454 |
+
attn_bias,
|
455 |
+
key_padding_mask,
|
456 |
+
is_causal,
|
457 |
+
self.attn_dropout_p,
|
458 |
+
self.training,
|
459 |
+
needs_weights,
|
460 |
+
**ckpt_kwargs,
|
461 |
+
)
|
462 |
+
else:
|
463 |
+
attn_fn_out: AttnFnOutput = self.attn_fn(
|
464 |
+
query,
|
465 |
+
key,
|
466 |
+
value,
|
467 |
+
self.n_heads,
|
468 |
+
softmax_scale=self.softmax_scale,
|
469 |
+
attn_bias=attn_bias,
|
470 |
+
key_padding_mask=key_padding_mask,
|
471 |
+
is_causal=is_causal,
|
472 |
+
dropout_p=self.attn_dropout_p,
|
473 |
+
training=self.training,
|
474 |
+
needs_weights=needs_weights,
|
475 |
+
)
|
476 |
+
context, attn_weights = attn_fn_out
|
477 |
+
return AttnOutput(self.out_proj(context), attn_weights, past_key_value)
|
478 |
|
479 |
def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_sequence_id):
|
480 |
+
if attn_impl == 'flash':
|
481 |
return None
|
482 |
+
elif attn_impl in ['torch', 'triton']:
|
483 |
if alibi:
|
484 |
+
if (prefix_lm or not causal) or use_sequence_id:
|
485 |
return (1, n_heads, seq_len, seq_len)
|
486 |
return (1, n_heads, 1, seq_len)
|
487 |
+
elif prefix_lm or use_sequence_id:
|
488 |
return (1, 1, seq_len, seq_len)
|
489 |
return None
|
490 |
else:
|
491 |
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
492 |
|
493 |
def build_attn_bias(attn_impl, attn_bias, n_heads, seq_len, causal=False, alibi=False, alibi_bias_max=8):
|
494 |
+
if attn_impl == 'flash':
|
495 |
return None
|
496 |
+
elif attn_impl in ['torch', 'triton']:
|
497 |
if alibi:
|
498 |
(device, dtype) = (attn_bias.device, attn_bias.dtype)
|
499 |
+
attn_bias = attn_bias.add(build_alibi_bias(n_heads, seq_len, full=not causal, alibi_bias_max=alibi_bias_max, device=device, dtype=dtype))
|
500 |
return attn_bias
|
501 |
else:
|
502 |
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
503 |
|
504 |
def gen_slopes(n_heads, alibi_bias_max=8, device=None):
|
505 |
+
_n_heads = 2 ** math.ceil(math.log2(n_heads))
|
506 |
+
m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
|
507 |
+
m = m.mul(alibi_bias_max / _n_heads)
|
508 |
+
slopes = 1.0 / torch.pow(2, m)
|
509 |
+
if _n_heads != n_heads:
|
510 |
slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
|
511 |
return slopes.view(1, n_heads, 1, 1)
|
512 |
|
513 |
def build_alibi_bias(n_heads, seq_len, full=False, alibi_bias_max=8, device=None, dtype=None):
|
514 |
+
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len)
|
515 |
if full:
|
516 |
+
alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, seq_len, 1)
|
517 |
+
alibi_bias = alibi_bias.abs().mul(-1)
|
518 |
slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
|
519 |
+
alibi_bias = alibi_bias * slopes
|
520 |
return alibi_bias.to(dtype=dtype)
|
521 |
+
ATTN_CLASS_REGISTRY = {'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention}
|
blocks.py
CHANGED
@@ -1,42 +1,46 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
from typing import Dict, Optional, Tuple
|
4 |
import torch
|
5 |
import torch.nn as nn
|
6 |
-
from .attention import ATTN_CLASS_REGISTRY
|
7 |
from .norm import NORM_CLASS_REGISTRY
|
8 |
|
|
|
|
|
|
|
|
|
9 |
class MPTMLP(nn.Module):
|
10 |
|
11 |
def __init__(self, d_model: int, expansion_ratio: int, device: Optional[str]=None):
|
12 |
super().__init__()
|
13 |
-
self.up_proj = nn.Linear(d_model,
|
14 |
self.act = nn.GELU(approximate='none')
|
15 |
-
self.down_proj = nn.Linear(
|
16 |
self.down_proj._is_residual = True
|
17 |
|
18 |
def forward(self, x):
|
19 |
return self.down_proj(self.act(self.up_proj(x)))
|
20 |
|
21 |
class MPTBlock(nn.Module):
|
|
|
22 |
|
23 |
-
def __init__(self, d_model: int, n_heads: int, expansion_ratio: int, attn_config: Dict={'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}, resid_pdrop: float=0.0, norm_type: str='low_precision_layernorm',
|
24 |
del kwargs
|
25 |
super().__init__()
|
26 |
norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
|
27 |
attn_class = ATTN_CLASS_REGISTRY[attn_config['attn_type']]
|
28 |
self.norm_1 = norm_class(d_model, device=device)
|
29 |
-
self.attn = attn_class(attn_impl=attn_config['attn_impl'], clip_qkv=attn_config['clip_qkv'], qk_ln=attn_config['qk_ln'], softmax_scale=attn_config['softmax_scale'], attn_pdrop=attn_config['attn_pdrop'], d_model=d_model, n_heads=n_heads,
|
30 |
self.norm_2 = norm_class(d_model, device=device)
|
31 |
self.ffn = MPTMLP(d_model=d_model, expansion_ratio=expansion_ratio, device=device)
|
32 |
self.resid_attn_dropout = nn.Dropout(resid_pdrop)
|
33 |
self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
|
34 |
|
35 |
-
def forward(self, x: torch.Tensor, past_key_value:
|
36 |
a = self.norm_1(x)
|
37 |
(b, _, past_key_value) = self.attn(a, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=is_causal)
|
38 |
-
x =
|
39 |
m = self.norm_2(x)
|
40 |
n = self.ffn(m)
|
41 |
-
x =
|
42 |
-
return (x, past_key_value)
|
|
|
1 |
+
"""GPT Blocks used for the GPT Model."""
|
2 |
+
from typing import Dict, Optional, Tuple, NamedTuple, Union
|
|
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
+
from .attention import ATTN_CLASS_REGISTRY, Attn, PastKeyValue
|
6 |
from .norm import NORM_CLASS_REGISTRY
|
7 |
|
8 |
+
class MPTBlockOutput(NamedTuple):
|
9 |
+
hidden_states: torch.Tensor
|
10 |
+
past_key_value: Union[PastKeyValue, Tuple, None]
|
11 |
+
|
12 |
class MPTMLP(nn.Module):
|
13 |
|
14 |
def __init__(self, d_model: int, expansion_ratio: int, device: Optional[str]=None):
|
15 |
super().__init__()
|
16 |
+
self.up_proj = nn.Linear(d_model, expansion_ratio * d_model, device=device)
|
17 |
self.act = nn.GELU(approximate='none')
|
18 |
+
self.down_proj = nn.Linear(expansion_ratio * d_model, d_model, device=device)
|
19 |
self.down_proj._is_residual = True
|
20 |
|
21 |
def forward(self, x):
|
22 |
return self.down_proj(self.act(self.up_proj(x)))
|
23 |
|
24 |
class MPTBlock(nn.Module):
|
25 |
+
attn: Attn
|
26 |
|
27 |
+
def __init__(self, d_model: int, n_heads: int, expansion_ratio: int, attn_config: Dict={'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}, resid_pdrop: float=0.0, norm_type: str='low_precision_layernorm', device: Optional[str]=None, **kwargs):
|
28 |
del kwargs
|
29 |
super().__init__()
|
30 |
norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
|
31 |
attn_class = ATTN_CLASS_REGISTRY[attn_config['attn_type']]
|
32 |
self.norm_1 = norm_class(d_model, device=device)
|
33 |
+
self.attn = attn_class(attn_impl=attn_config['attn_impl'], clip_qkv=attn_config['clip_qkv'], qk_ln=attn_config['qk_ln'], softmax_scale=attn_config['softmax_scale'], attn_pdrop=attn_config['attn_pdrop'], d_model=d_model, n_heads=n_heads, device=device)
|
34 |
self.norm_2 = norm_class(d_model, device=device)
|
35 |
self.ffn = MPTMLP(d_model=d_model, expansion_ratio=expansion_ratio, device=device)
|
36 |
self.resid_attn_dropout = nn.Dropout(resid_pdrop)
|
37 |
self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
|
38 |
|
39 |
+
def forward(self, x: torch.Tensor, past_key_value: Union[PastKeyValue, Tuple, None] = None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.ByteTensor]=None, is_causal: bool=True) -> MPTBlockOutput:
|
40 |
a = self.norm_1(x)
|
41 |
(b, _, past_key_value) = self.attn(a, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=is_causal)
|
42 |
+
x = x + self.resid_attn_dropout(b)
|
43 |
m = self.norm_2(x)
|
44 |
n = self.ffn(m)
|
45 |
+
x = x + self.resid_ffn_dropout(n)
|
46 |
+
return MPTBlockOutput(x, past_key_value)
|
is_torch_version.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import logging
|
3 |
+
import operator as op
|
4 |
+
from packaging import version
|
5 |
+
from packaging.version import Version, parse
|
6 |
+
from typing import Union
|
7 |
+
import importlib.util
|
8 |
+
|
9 |
+
# The package importlib_metadata is in a different place, depending on the python version.
|
10 |
+
if sys.version_info < (3, 8):
|
11 |
+
import importlib_metadata
|
12 |
+
else:
|
13 |
+
import importlib.metadata as importlib_metadata
|
14 |
+
|
15 |
+
STR_OPERATION_TO_FUNC = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt}
|
16 |
+
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
_torch_available = importlib.util.find_spec("torch") is not None
|
20 |
+
if _torch_available:
|
21 |
+
try:
|
22 |
+
_torch_version = importlib_metadata.version("torch")
|
23 |
+
logger.info(f"PyTorch version {_torch_version} available.")
|
24 |
+
except importlib_metadata.PackageNotFoundError:
|
25 |
+
_torch_available = False
|
26 |
+
|
27 |
+
# This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L319
|
28 |
+
def compare_versions(library_or_version: Union[str, Version], operation: str, requirement_version: str):
|
29 |
+
"""
|
30 |
+
Args:
|
31 |
+
Compares a library version to some requirement using a given operation.
|
32 |
+
library_or_version (`str` or `packaging.version.Version`):
|
33 |
+
A library name or a version to check.
|
34 |
+
operation (`str`):
|
35 |
+
A string representation of an operator, such as `">"` or `"<="`.
|
36 |
+
requirement_version (`str`):
|
37 |
+
The version to compare the library version against
|
38 |
+
"""
|
39 |
+
if operation not in STR_OPERATION_TO_FUNC.keys():
|
40 |
+
raise ValueError(f"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys())}, received {operation}")
|
41 |
+
operation = STR_OPERATION_TO_FUNC[operation]
|
42 |
+
if isinstance(library_or_version, str):
|
43 |
+
library_or_version = parse(importlib_metadata.version(library_or_version))
|
44 |
+
return operation(library_or_version, parse(requirement_version))
|
45 |
+
|
46 |
+
# This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L338
|
47 |
+
def is_torch_version(operation: str, version: str):
|
48 |
+
"""
|
49 |
+
Args:
|
50 |
+
Compares the current PyTorch version to a given reference with an operation.
|
51 |
+
operation (`str`):
|
52 |
+
A string representation of an operator, such as `">"` or `"<="`
|
53 |
+
version (`str`):
|
54 |
+
A string version of PyTorch
|
55 |
+
"""
|
56 |
+
return compare_versions(parse(_torch_version), operation, version)
|
modeling_mpt.py
CHANGED
@@ -1,30 +1,48 @@
|
|
|
|
1 |
|
2 |
-
|
|
|
3 |
import math
|
4 |
import warnings
|
5 |
-
from typing import List, Optional, Tuple, Union
|
6 |
import torch
|
7 |
import torch.nn as nn
|
8 |
import torch.nn.functional as F
|
|
|
9 |
from transformers import PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast
|
10 |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
11 |
-
from .
|
12 |
-
from .
|
|
|
13 |
from .norm import NORM_CLASS_REGISTRY
|
14 |
from .configuration_mpt import MPTConfig
|
15 |
from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising
|
16 |
from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm
|
17 |
from .meta_init_context import init_empty_weights
|
18 |
from .param_init_fns import MODEL_INIT_REGISTRY, generic_param_init_fn_
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
class MPTPreTrainedModel(PreTrainedModel):
|
26 |
config_class = MPTConfig
|
27 |
base_model_prefix = 'model'
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
class MPTModel(MPTPreTrainedModel):
|
30 |
|
@@ -36,37 +54,37 @@ class MPTModel(MPTPreTrainedModel):
|
|
36 |
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
|
37 |
self.alibi = config.attn_config['alibi']
|
38 |
self.alibi_bias_max = config.attn_config['alibi_bias_max']
|
39 |
-
if
|
40 |
norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
|
41 |
raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).')
|
42 |
norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
|
43 |
self.embedding_fraction = config.embedding_fraction
|
44 |
self.wte = nn.Embedding(config.vocab_size, config.d_model, device=config.init_device)
|
45 |
-
if
|
46 |
self.wpe = nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
|
47 |
self.emb_drop = nn.Dropout(config.emb_pdrop)
|
48 |
self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
|
49 |
self.norm_f = norm_class(config.d_model, device=config.init_device)
|
50 |
-
if
|
51 |
-
print(f'You are using config.init_device={config.init_device!r}, but you can also use config.init_device="meta" with Composer + FSDP for fast initialization.')
|
52 |
self.apply(self.param_init_fn)
|
53 |
-
self.is_causal =
|
54 |
self._attn_bias_initialized = False
|
55 |
self.attn_bias = None
|
56 |
self.attn_bias_shape = attn_bias_shape(self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, prefix_lm=self.prefix_lm, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id)
|
57 |
if config.no_bias:
|
58 |
for module in self.modules():
|
59 |
-
if
|
60 |
if config.verbose:
|
61 |
warnings.warn(f'Removing bias ({module.bias}) from {module}.')
|
62 |
module.register_parameter('bias', None)
|
63 |
-
if
|
64 |
print(self)
|
65 |
-
if
|
66 |
self.config.init_config['verbose'] = self.config.verbose
|
67 |
-
if
|
68 |
init_fn_name = self.config.init_config['name']
|
69 |
warnings.warn(f'Using {init_fn_name} initialization.')
|
|
|
70 |
|
71 |
def get_input_embeddings(self):
|
72 |
return self.wte
|
@@ -76,115 +94,157 @@ class MPTModel(MPTPreTrainedModel):
|
|
76 |
|
77 |
@torch.no_grad()
|
78 |
def _attn_bias(self, device, dtype, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None):
|
79 |
-
if
|
80 |
if self.attn_bias_shape:
|
81 |
self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype)
|
82 |
self.attn_bias = build_attn_bias(self.attn_impl, self.attn_bias, self.config.n_heads, self.config.max_seq_len, causal=self.is_causal, alibi=self.alibi, alibi_bias_max=self.alibi_bias_max)
|
83 |
self._attn_bias_initialized = True
|
84 |
-
if
|
85 |
return (self.attn_bias, attention_mask)
|
86 |
-
if
|
87 |
self.attn_bias = self.attn_bias.to(dtype=dtype, device=device)
|
88 |
attn_bias = self.attn_bias
|
89 |
if self.prefix_lm:
|
90 |
assert isinstance(attn_bias, torch.Tensor)
|
91 |
assert isinstance(prefix_mask, torch.Tensor)
|
92 |
attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask)
|
93 |
-
if
|
94 |
assert isinstance(attn_bias, torch.Tensor)
|
95 |
attn_bias = self._apply_sequence_id(attn_bias, sequence_id)
|
96 |
-
if
|
97 |
-
s_k = attention_mask.shape[
|
98 |
-
if
|
99 |
attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype)
|
100 |
else:
|
101 |
-
attn_bias = attn_bias[:, :, :,
|
102 |
-
if
|
103 |
-
raise ValueError(
|
104 |
min_val = torch.finfo(attn_bias.dtype).min
|
105 |
-
attn_bias = attn_bias.masked_fill(
|
106 |
return (attn_bias, None)
|
107 |
|
108 |
def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor):
|
109 |
-
(s_k, s_q) = attn_bias.shape[
|
110 |
-
if
|
111 |
-
raise ValueError(
|
112 |
-
seq_len = prefix_mask.shape[
|
113 |
-
if
|
114 |
raise ValueError(f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
|
115 |
attn_bias = attn_bias[..., :seq_len, :seq_len]
|
116 |
causal = torch.tril(torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device)).view(1, 1, seq_len, seq_len)
|
117 |
-
prefix = prefix_mask.view(
|
118 |
-
cannot_attend =
|
119 |
min_val = torch.finfo(attn_bias.dtype).min
|
120 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
121 |
return attn_bias
|
122 |
|
123 |
def _apply_sequence_id(self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor):
|
124 |
-
seq_len = sequence_id.shape[
|
125 |
-
if
|
126 |
raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
|
127 |
attn_bias = attn_bias[..., :seq_len, :seq_len]
|
128 |
-
cannot_attend = torch.logical_not(torch.eq(sequence_id.view(
|
129 |
min_val = torch.finfo(attn_bias.dtype).min
|
130 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
131 |
return attn_bias
|
132 |
|
133 |
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None):
|
134 |
-
return_dict =
|
135 |
-
use_cache =
|
136 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
attention_mask = attention_mask.bool()
|
138 |
-
if
|
139 |
prefix_mask = prefix_mask.bool()
|
140 |
-
if
|
141 |
raise NotImplementedError('return_dict False is not implemented yet for MPT')
|
142 |
if output_attentions:
|
143 |
raise NotImplementedError('output_attentions is not implemented yet for MPT')
|
144 |
-
if
|
145 |
raise NotImplementedError('MPT does not support training with left padding.')
|
146 |
-
if
|
147 |
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
|
148 |
if self.training:
|
149 |
-
if
|
150 |
-
raise ValueError(
|
151 |
-
elif
|
152 |
-
warnings.warn(
|
153 |
S = input_ids.size(1)
|
154 |
-
assert
|
155 |
tok_emb = self.wte(input_ids)
|
156 |
if self.alibi:
|
157 |
x = tok_emb
|
158 |
else:
|
159 |
past_position = 0
|
160 |
-
if
|
161 |
-
if
|
162 |
-
raise ValueError(
|
163 |
past_position = past_key_values[0][0].size(1)
|
164 |
-
if
|
165 |
-
raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length {
|
166 |
-
pos = torch.arange(past_position,
|
167 |
-
if
|
168 |
-
pos = torch.clamp(
|
169 |
pos_emb = self.wpe(pos)
|
170 |
-
x =
|
171 |
-
if
|
172 |
x = self.emb_drop(x)
|
173 |
else:
|
174 |
-
x_shrunk =
|
175 |
assert isinstance(self.emb_drop, nn.Module)
|
176 |
x = self.emb_drop(x_shrunk)
|
177 |
(attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=x.dtype, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
|
178 |
-
if
|
179 |
past_key_values = [() for _ in range(self.config.n_layers)]
|
180 |
-
all_hidden_states = (
|
181 |
for (b_idx, block) in enumerate(self.blocks):
|
182 |
if output_hidden_states:
|
183 |
-
assert
|
184 |
-
all_hidden_states =
|
185 |
-
past_key_value =
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
past_key_values[b_idx] = past_key_value
|
189 |
x = self.norm_f(x)
|
190 |
return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=past_key_values, hidden_states=all_hidden_states)
|
@@ -203,15 +263,15 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
203 |
|
204 |
def __init__(self, config: MPTConfig):
|
205 |
super().__init__(config)
|
206 |
-
if
|
207 |
raise ValueError('MPTForCausalLM only supports tied word embeddings')
|
208 |
self.transformer = MPTModel(config)
|
209 |
self.logit_scale = None
|
210 |
-
if
|
211 |
logit_scale = config.logit_scale
|
212 |
if isinstance(logit_scale, str):
|
213 |
-
if
|
214 |
-
logit_scale =
|
215 |
else:
|
216 |
raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
|
217 |
self.logit_scale = logit_scale
|
@@ -234,20 +294,20 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
234 |
def get_decoder(self):
|
235 |
return self.transformer
|
236 |
|
237 |
-
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None):
|
238 |
-
return_dict =
|
239 |
-
use_cache =
|
240 |
outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache)
|
241 |
logits = F.linear(outputs.last_hidden_state, self.transformer.wte.weight)
|
242 |
-
if
|
243 |
-
if
|
244 |
warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
|
245 |
logits *= self.logit_scale
|
246 |
loss = None
|
247 |
-
if
|
248 |
-
labels = torch.roll(labels, shifts
|
249 |
-
labels[:,
|
250 |
-
loss = F.cross_entropy(logits.view(
|
251 |
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states)
|
252 |
|
253 |
def param_init_fn(self, module):
|
@@ -261,20 +321,20 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
261 |
return isinstance(module, MPTBlock)
|
262 |
|
263 |
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
264 |
-
if
|
265 |
raise NotImplementedError('inputs_embeds is not implemented for MPT yet')
|
266 |
attention_mask = kwargs['attention_mask'].bool()
|
267 |
-
if
|
268 |
raise NotImplementedError('MPT does not support generation with right padding.')
|
269 |
-
if
|
270 |
sequence_id = torch.zeros_like(input_ids[:1])
|
271 |
else:
|
272 |
sequence_id = None
|
273 |
-
if
|
274 |
-
input_ids = input_ids[:,
|
275 |
if self.transformer.prefix_lm:
|
276 |
prefix_mask = torch.ones_like(attention_mask)
|
277 |
-
if
|
278 |
raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.')
|
279 |
else:
|
280 |
prefix_mask = None
|
@@ -282,8 +342,12 @@ class MPTForCausalLM(MPTPreTrainedModel):
|
|
282 |
|
283 |
@staticmethod
|
284 |
def _reorder_cache(past_key_values, beam_idx):
|
285 |
-
|
|
|
|
|
|
|
|
|
286 |
reordered_past = []
|
287 |
for layer_past in past_key_values:
|
288 |
reordered_past += [tuple((past_state.index_select(0, beam_idx) for past_state in layer_past))]
|
289 |
-
return reordered_past
|
|
|
1 |
+
"""A simple, flexible implementation of a GPT model.
|
2 |
|
3 |
+
Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
|
4 |
+
"""
|
5 |
import math
|
6 |
import warnings
|
7 |
+
from typing import Any, List, Optional, Tuple, Union, Protocol, Dict
|
8 |
import torch
|
9 |
import torch.nn as nn
|
10 |
import torch.nn.functional as F
|
11 |
+
from torch.utils.checkpoint import checkpoint
|
12 |
from transformers import PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast
|
13 |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
14 |
+
from transformers.utils import logging
|
15 |
+
from .attention import attn_bias_shape, build_attn_bias, PastKeyValue, MultiheadAttention, MultiQueryAttention
|
16 |
+
from .blocks import MPTBlock, MPTBlockOutput
|
17 |
from .norm import NORM_CLASS_REGISTRY
|
18 |
from .configuration_mpt import MPTConfig
|
19 |
from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising
|
20 |
from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm
|
21 |
from .meta_init_context import init_empty_weights
|
22 |
from .param_init_fns import MODEL_INIT_REGISTRY, generic_param_init_fn_
|
23 |
+
from .is_torch_version import is_torch_version
|
24 |
+
|
25 |
+
Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
class MPTBlockCheckpointedForward(Protocol):
|
30 |
+
def __call__(
|
31 |
+
x: torch.Tensor,
|
32 |
+
past_key_value: Union[PastKeyValue, Tuple, None],
|
33 |
+
attn_bias: Optional[torch.Tensor],
|
34 |
+
attention_mask: Optional[torch.ByteTensor],
|
35 |
+
is_causal: bool,
|
36 |
+
) -> MPTBlockOutput: ...
|
37 |
|
38 |
class MPTPreTrainedModel(PreTrainedModel):
|
39 |
config_class = MPTConfig
|
40 |
base_model_prefix = 'model'
|
41 |
+
_no_split_modules = ['MPTBlock']
|
42 |
+
supports_gradient_checkpointing = True
|
43 |
+
def _set_gradient_checkpointing(self, module: nn.Module, value=False) -> None:
|
44 |
+
if isinstance(module, MPTModel) or isinstance(module, MultiheadAttention) or isinstance(module, MultiQueryAttention):
|
45 |
+
module.gradient_checkpointing = value
|
46 |
|
47 |
class MPTModel(MPTPreTrainedModel):
|
48 |
|
|
|
54 |
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
|
55 |
self.alibi = config.attn_config['alibi']
|
56 |
self.alibi_bias_max = config.attn_config['alibi_bias_max']
|
57 |
+
if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
|
58 |
norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
|
59 |
raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).')
|
60 |
norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
|
61 |
self.embedding_fraction = config.embedding_fraction
|
62 |
self.wte = nn.Embedding(config.vocab_size, config.d_model, device=config.init_device)
|
63 |
+
if not self.alibi:
|
64 |
self.wpe = nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
|
65 |
self.emb_drop = nn.Dropout(config.emb_pdrop)
|
66 |
self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
|
67 |
self.norm_f = norm_class(config.d_model, device=config.init_device)
|
68 |
+
if config.init_device != 'meta':
|
|
|
69 |
self.apply(self.param_init_fn)
|
70 |
+
self.is_causal = not self.prefix_lm
|
71 |
self._attn_bias_initialized = False
|
72 |
self.attn_bias = None
|
73 |
self.attn_bias_shape = attn_bias_shape(self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, prefix_lm=self.prefix_lm, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id)
|
74 |
if config.no_bias:
|
75 |
for module in self.modules():
|
76 |
+
if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
|
77 |
if config.verbose:
|
78 |
warnings.warn(f'Removing bias ({module.bias}) from {module}.')
|
79 |
module.register_parameter('bias', None)
|
80 |
+
if config.verbose and config.verbose > 2:
|
81 |
print(self)
|
82 |
+
if 'verbose' not in self.config.init_config:
|
83 |
self.config.init_config['verbose'] = self.config.verbose
|
84 |
+
if self.config.init_config['verbose'] > 1:
|
85 |
init_fn_name = self.config.init_config['name']
|
86 |
warnings.warn(f'Using {init_fn_name} initialization.')
|
87 |
+
self.gradient_checkpointing = False
|
88 |
|
89 |
def get_input_embeddings(self):
|
90 |
return self.wte
|
|
|
94 |
|
95 |
@torch.no_grad()
|
96 |
def _attn_bias(self, device, dtype, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None):
|
97 |
+
if not self._attn_bias_initialized:
|
98 |
if self.attn_bias_shape:
|
99 |
self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype)
|
100 |
self.attn_bias = build_attn_bias(self.attn_impl, self.attn_bias, self.config.n_heads, self.config.max_seq_len, causal=self.is_causal, alibi=self.alibi, alibi_bias_max=self.alibi_bias_max)
|
101 |
self._attn_bias_initialized = True
|
102 |
+
if self.attn_impl == 'flash':
|
103 |
return (self.attn_bias, attention_mask)
|
104 |
+
if self.attn_bias is not None:
|
105 |
self.attn_bias = self.attn_bias.to(dtype=dtype, device=device)
|
106 |
attn_bias = self.attn_bias
|
107 |
if self.prefix_lm:
|
108 |
assert isinstance(attn_bias, torch.Tensor)
|
109 |
assert isinstance(prefix_mask, torch.Tensor)
|
110 |
attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask)
|
111 |
+
if self.attn_uses_sequence_id and sequence_id is not None:
|
112 |
assert isinstance(attn_bias, torch.Tensor)
|
113 |
attn_bias = self._apply_sequence_id(attn_bias, sequence_id)
|
114 |
+
if attention_mask is not None:
|
115 |
+
s_k = attention_mask.shape[-1]
|
116 |
+
if attn_bias is None:
|
117 |
attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype)
|
118 |
else:
|
119 |
+
attn_bias = attn_bias[:, :, :, -s_k:]
|
120 |
+
if prefix_mask is not None and attention_mask.shape != prefix_mask.shape:
|
121 |
+
raise ValueError(f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.')
|
122 |
min_val = torch.finfo(attn_bias.dtype).min
|
123 |
+
attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val)
|
124 |
return (attn_bias, None)
|
125 |
|
126 |
def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor):
|
127 |
+
(s_k, s_q) = attn_bias.shape[-2:]
|
128 |
+
if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len:
|
129 |
+
raise ValueError('attn_bias does not match the expected shape. ' + f'The last two dimensions should both be {self.config.max_length} ' + f'but are {s_k} and {s_q}.')
|
130 |
+
seq_len = prefix_mask.shape[-1]
|
131 |
+
if seq_len > self.config.max_seq_len:
|
132 |
raise ValueError(f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
|
133 |
attn_bias = attn_bias[..., :seq_len, :seq_len]
|
134 |
causal = torch.tril(torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device)).view(1, 1, seq_len, seq_len)
|
135 |
+
prefix = prefix_mask.view(-1, 1, 1, seq_len)
|
136 |
+
cannot_attend = ~torch.logical_or(causal, prefix.bool())
|
137 |
min_val = torch.finfo(attn_bias.dtype).min
|
138 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
139 |
return attn_bias
|
140 |
|
141 |
def _apply_sequence_id(self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor):
|
142 |
+
seq_len = sequence_id.shape[-1]
|
143 |
+
if seq_len > self.config.max_seq_len:
|
144 |
raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
|
145 |
attn_bias = attn_bias[..., :seq_len, :seq_len]
|
146 |
+
cannot_attend = torch.logical_not(torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))).unsqueeze(1)
|
147 |
min_val = torch.finfo(attn_bias.dtype).min
|
148 |
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
149 |
return attn_bias
|
150 |
|
151 |
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None):
|
152 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
153 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
154 |
+
if self.gradient_checkpointing and self.training:
|
155 |
+
if use_cache:
|
156 |
+
logger.warning_once(
|
157 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
158 |
+
)
|
159 |
+
use_cache = False
|
160 |
+
if attention_mask is not None:
|
161 |
attention_mask = attention_mask.bool()
|
162 |
+
if prefix_mask is not None:
|
163 |
prefix_mask = prefix_mask.bool()
|
164 |
+
if not return_dict:
|
165 |
raise NotImplementedError('return_dict False is not implemented yet for MPT')
|
166 |
if output_attentions:
|
167 |
raise NotImplementedError('output_attentions is not implemented yet for MPT')
|
168 |
+
if attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0] and self.training:
|
169 |
raise NotImplementedError('MPT does not support training with left padding.')
|
170 |
+
if self.prefix_lm and prefix_mask is None:
|
171 |
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
|
172 |
if self.training:
|
173 |
+
if self.attn_uses_sequence_id and sequence_id is None:
|
174 |
+
raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
|
175 |
+
elif self.attn_uses_sequence_id is False and sequence_id is not None:
|
176 |
+
warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
|
177 |
S = input_ids.size(1)
|
178 |
+
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
179 |
tok_emb = self.wte(input_ids)
|
180 |
if self.alibi:
|
181 |
x = tok_emb
|
182 |
else:
|
183 |
past_position = 0
|
184 |
+
if past_key_values is not None:
|
185 |
+
if len(past_key_values) != self.config.n_layers:
|
186 |
+
raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
|
187 |
past_position = past_key_values[0][0].size(1)
|
188 |
+
if S + past_position > self.config.max_seq_len:
|
189 |
+
raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length {S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
|
190 |
+
pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0)
|
191 |
+
if attention_mask is not None:
|
192 |
+
pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
|
193 |
pos_emb = self.wpe(pos)
|
194 |
+
x = tok_emb + pos_emb
|
195 |
+
if self.embedding_fraction == 1:
|
196 |
x = self.emb_drop(x)
|
197 |
else:
|
198 |
+
x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction)
|
199 |
assert isinstance(self.emb_drop, nn.Module)
|
200 |
x = self.emb_drop(x_shrunk)
|
201 |
(attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=x.dtype, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
|
202 |
+
if use_cache and past_key_values is None:
|
203 |
past_key_values = [() for _ in range(self.config.n_layers)]
|
204 |
+
all_hidden_states = () if output_hidden_states else None
|
205 |
for (b_idx, block) in enumerate(self.blocks):
|
206 |
if output_hidden_states:
|
207 |
+
assert all_hidden_states is not None
|
208 |
+
all_hidden_states = all_hidden_states + (x,)
|
209 |
+
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
|
210 |
+
if self.gradient_checkpointing and self.training:
|
211 |
+
ckpt_kwargs: Dict[str, Any] = {'use_reentrant': False} if is_torch_version('>=', '1.11.0') else {}
|
212 |
+
def create_custom_forward(module: MPTBlock) -> MPTBlockCheckpointedForward:
|
213 |
+
def custom_forward(
|
214 |
+
x: torch.Tensor,
|
215 |
+
past_key_value: Union[PastKeyValue, Tuple, None],
|
216 |
+
attn_bias: Optional[torch.Tensor],
|
217 |
+
attention_mask: Optional[torch.ByteTensor],
|
218 |
+
is_causal: bool
|
219 |
+
):
|
220 |
+
return module.forward(
|
221 |
+
x,
|
222 |
+
past_key_value,
|
223 |
+
attn_bias,
|
224 |
+
attention_mask,
|
225 |
+
is_causal,
|
226 |
+
)
|
227 |
+
return custom_forward
|
228 |
+
block_out: MPTBlockOutput = checkpoint(
|
229 |
+
create_custom_forward(block),
|
230 |
+
x,
|
231 |
+
past_key_value,
|
232 |
+
attn_bias,
|
233 |
+
attention_mask,
|
234 |
+
self.is_causal,
|
235 |
+
**ckpt_kwargs,
|
236 |
+
)
|
237 |
+
else:
|
238 |
+
block_out: MPTBlockOutput = block(
|
239 |
+
x,
|
240 |
+
past_key_value=past_key_value,
|
241 |
+
attn_bias=attn_bias,
|
242 |
+
attention_mask=attention_mask,
|
243 |
+
is_causal=self.is_causal,
|
244 |
+
)
|
245 |
+
x, past_key_value = block_out
|
246 |
+
del block_out
|
247 |
+
if past_key_values is not None:
|
248 |
past_key_values[b_idx] = past_key_value
|
249 |
x = self.norm_f(x)
|
250 |
return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=past_key_values, hidden_states=all_hidden_states)
|
|
|
263 |
|
264 |
def __init__(self, config: MPTConfig):
|
265 |
super().__init__(config)
|
266 |
+
if not config.tie_word_embeddings:
|
267 |
raise ValueError('MPTForCausalLM only supports tied word embeddings')
|
268 |
self.transformer = MPTModel(config)
|
269 |
self.logit_scale = None
|
270 |
+
if config.logit_scale is not None:
|
271 |
logit_scale = config.logit_scale
|
272 |
if isinstance(logit_scale, str):
|
273 |
+
if logit_scale == 'inv_sqrt_d_model':
|
274 |
+
logit_scale = 1 / math.sqrt(config.d_model)
|
275 |
else:
|
276 |
raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
|
277 |
self.logit_scale = logit_scale
|
|
|
294 |
def get_decoder(self):
|
295 |
return self.transformer
|
296 |
|
297 |
+
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, *args, **kwargs):
|
298 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
299 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
300 |
outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache)
|
301 |
logits = F.linear(outputs.last_hidden_state, self.transformer.wte.weight)
|
302 |
+
if self.logit_scale is not None:
|
303 |
+
if self.logit_scale == 0:
|
304 |
warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
|
305 |
logits *= self.logit_scale
|
306 |
loss = None
|
307 |
+
if labels is not None:
|
308 |
+
labels = torch.roll(labels, shifts=-1)
|
309 |
+
labels[:, -1] = -100
|
310 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1))
|
311 |
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states)
|
312 |
|
313 |
def param_init_fn(self, module):
|
|
|
321 |
return isinstance(module, MPTBlock)
|
322 |
|
323 |
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
324 |
+
if inputs_embeds is not None:
|
325 |
raise NotImplementedError('inputs_embeds is not implemented for MPT yet')
|
326 |
attention_mask = kwargs['attention_mask'].bool()
|
327 |
+
if attention_mask[:, -1].sum() != attention_mask.shape[0]:
|
328 |
raise NotImplementedError('MPT does not support generation with right padding.')
|
329 |
+
if self.transformer.attn_uses_sequence_id and self.training:
|
330 |
sequence_id = torch.zeros_like(input_ids[:1])
|
331 |
else:
|
332 |
sequence_id = None
|
333 |
+
if past_key_values is not None:
|
334 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
335 |
if self.transformer.prefix_lm:
|
336 |
prefix_mask = torch.ones_like(attention_mask)
|
337 |
+
if kwargs.get('use_cache') == False:
|
338 |
raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.')
|
339 |
else:
|
340 |
prefix_mask = None
|
|
|
342 |
|
343 |
@staticmethod
|
344 |
def _reorder_cache(past_key_values, beam_idx):
|
345 |
+
"""Used by HuggingFace generate when using beam search with kv-caching.
|
346 |
+
|
347 |
+
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
|
348 |
+
for an example in transformers.
|
349 |
+
"""
|
350 |
reordered_past = []
|
351 |
for layer_past in past_key_values:
|
352 |
reordered_past += [tuple((past_state.index_select(0, beam_idx) for past_state in layer_past))]
|
353 |
+
return reordered_past
|