EMOTION2VEC
emotion2vec: universal speech emotion representation model
emotion2vec: Self-Supervised Pre-Training for Speech Emotion Representation
Guides
emotion2vec is the first universal speech emotion representation model. Through self-supervised pre-training, emotion2vec has the ability to extract emotion representation across different tasks, languages, and scenarios.
The version is an pre-trained representation model without fine-tuning, which can be used for feature extraction.
Model Card
GitHub Repo: emotion2vec
Model | ⭐Model Scope | 🤗Hugging Face | Fine-tuning Data (Hours) |
---|---|---|---|
emotion2vec | Link | Link | / |
emotion2vec+ seed | Link | Link | 201 |
emotion2vec+ base | Link | Link | 4788 |
emotion2vec+ large | Link | Link | 42526 |
Installation
pip install -U funasr modelscope
Usage
input: 16k Hz speech recording
granularity:
- "utterance": Extract features from the entire utterance
- "frame": Extract frame-level features (50 Hz)
extract_embedding: Whether to extract features
Inference based on ModelScope
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
inference_pipeline = pipeline(
task=Tasks.emotion_recognition,
model="iic/emotion2vec_base")
rec_result = inference_pipeline('https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav', output_dir="./outputs", granularity="utterance", extract_embedding=True)
print(rec_result)
Inference based on FunASR
from funasr import AutoModel
model = AutoModel(model="iic/emotion2vec_base")
res = model(input='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav', output_dir="./outputs", granularity="utterance", extract_embedding=True)
print(res)
Note: The model will automatically download.
Supports input file list, wav.scp (Kaldi style):
wav_name1 wav_path1.wav
wav_name2 wav_path2.wav
...
Outputs are emotion representation, saved in the output_dir in numpy format (can be loaded with np.load())
Note
This repository is the Huggingface version of emotion2vec, with identical model parameters as the original model and Model Scope version.
Original repository: https://github.com/ddlBoJack/emotion2vec
Model Scope repository: https://www.modelscope.cn/models/iic/emotion2vec_plus_large/summary
Hugging Face repository: https://huggingface.co/emotion2vec
FunASR repository: https://github.com/alibaba-damo-academy/FunASR
Citation
@article{ma2023emotion2vec,
title={emotion2vec: Self-Supervised Pre-Training for Speech Emotion Representation},
author={Ma, Ziyang and Zheng, Zhisheng and Ye, Jiaxin and Li, Jinchao and Gao, Zhifu and Zhang, Shiliang and Chen, Xie},
journal={arXiv preprint arXiv:2312.15185},
year={2023}
}
- Downloads last month
- 10